期刊文献+
共找到2,229篇文章
< 1 2 112 >
每页显示 20 50 100
Research Progress of Carbon-Silicone Composite Materials
1
作者 Beibei Liu Rongjie Kan 《Expert Review of Chinese Chemical》 2024年第2期1-7,共7页
Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistan... Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistance,aging resistance,high and low temperature resistance and chemical corrosion resistance.Moreover,silicone materials have process-able properties,simple forming process,good mechanical property,non-toxic and pollution-free.Therefore,silicone has been widely concerned by researchers at home and abroad.In this paper,the main research progress and application directions of carbon-silicone composite at home and abroad in recent years are reviewed. 展开更多
关键词 carbon materials GRAPHEME SILICONE composite materials
下载PDF
Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation 被引量:2
2
作者 Yi Liu Jingnan Qin +2 位作者 Linlin Lu Jie Xu Xiaolei Su 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期525-535,共11页
Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing perform... Porous carbon(PC)is a promising electromagnetic(EM)wave absorbing material thanks to its light weight,large specific surface area as well as good dissipating capacity.To further improve its microwave absorbing performance,silver coated porous carbon(Ag@PC)is synthesized by one-step hydro-thermal synthesis process making use of fir as a biomass formwork.Phase compositions,morphological structure,and microwave absorption capability of the Ag@PC has been explored.Research results show that the metallic Ag was successfully reduced and the particles are evenly distributed inward the pores of the carbon formwork,which accelerates graphitization process of the amorphous carbon.The Ag@PC composite without adding polyvinyl pyrrolidone(PVP)exhibits higher dielectric constant and better EM wave dissipating capability.This is because the larger particles of Ag give rise to higher electric conductivity.After combing with frequency selective surface(FSS),the EM wave absorbing performance is further improved and the frequency region below-10 d B is located in8.20-11.75 GHz,and the minimal reflection loss value is-22.5 dB.This work indicates that incorporating metallic Ag particles and FSS provides a valid way to strengthen EM wave absorbing capacity of PC material. 展开更多
关键词 biomass carbon Ag@PC composite material frequency selective surface electromagnetic wave absorbing property
下载PDF
Durability Testing of Composite Aerospace Materials Based on a New Polymer Carbon Fiber-Reinforced Epoxy Resin
3
作者 Jinlong Shang 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2315-2327,共13页
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr... In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%. 展开更多
关键词 Polymer aerospace materials corrosion carbonfiber composite material epoxy resin mechanical properties thermal analysis
下载PDF
Electrochemical performance of sulfur composite cathode materials for rechargeable lithium batteries 被引量:10
4
作者 Feng Wu Sheng Xian Wu +2 位作者 Ren Jie Chen Shi Chen Guo Qing Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第10期1255-1258,共4页
The structure and characteristic of carbon materials have a direct influence on the electrochemical performance of sulfur-carbon composite electrode materials for lithium-sulfur battery. In this paper, sulfur composit... The structure and characteristic of carbon materials have a direct influence on the electrochemical performance of sulfur-carbon composite electrode materials for lithium-sulfur battery. In this paper, sulfur composite has been synthesized by heating a mixture of elemental sulfur and activated carbon, which is characterized as high specific surface area and microporous structure. The composite, contained 70% sulfur, as cathode in a lithium cell based on organic liquid electrolyte was tested at room temperature. It showed two reduction peaks at 2.05 V and 2.35 V, one oxidation peak at 2.4 V during cyclic voltammogram test. The initial discharge specific capacity was 1180.8 mAh g-1 and the utilization of electrochemically active sulfur was about 70.6% assuming a complete reaction to the product of Li2S. The specific capacity still kept as high as 720.4 mAh g^-1 after 60 cycles retaining 61% of the initial discharge capacity. 展开更多
关键词 sulfur composite Cathode materials Activated carbon Electrochemical performance
下载PDF
Functional porous carbon-based composite electrode materials for lithium secondary batteries 被引量:5
5
作者 Kai Zhang Zhe Hu Jun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期214-225,共12页
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great break... The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries. 展开更多
关键词 porous carbons functional materials composite electrode materials synthetic method lithium secondary batteries
下载PDF
Structural Characterization and Property Study on the Activated Alumina-activated Carbon Composite Material 被引量:6
6
作者 陈燕青 吴任平 叶先锋 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2012年第3期315-320,共6页
AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and ... AlCl3,NH3·H2O,HNO3 and activated carbon were used as raw materials to prepare one new type of activated alumina-activated carbon composite material.The influence of heat treatment conditions on the structure and property of this material was discussed;The microstructures of the composite material were characterized by XRD,SEM,BET techniques;and its formaldehyde adsorption characteristic was also tested.The results showed that the optimal heat treatment temperature of the activated alumina-activated carbon composite material was 450 ℃,iodine adsorption value was 441.40 mg/g,compressive strength was 44 N,specific surface area was 360.07 m2/g,average pore size was 2.91 nm,and pore volume was 0.26 m3/g.According to the BET pore size distribution diagram,the composite material has dual-pore size distribution structure,the micro-pore distributes in the range of 0.6-1.7 nm,and the meso-pore in the range of 3.0-8.0 nm.The formaldehyde adsorption effect of the activated alumina-activated carbon composite material was excellent,much better than that of the pure activated carbon or activated alumina,and its saturated adsorption capacity was 284.19 mg/g. 展开更多
关键词 activated carbon activated alumina composite material FORMALDEHYDE ADSORPTION
下载PDF
Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries 被引量:6
7
作者 Hao-Jie Liang Zhen-Yi Gu +7 位作者 Xue-Ying Zheng Wen-Hao Li Ling-Yun Zhu Zhong-Hui Sun Yun-Feng Meng Hai-Yue Yu Xian-Kun Hou Xing-Long Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期589-598,I0012,共11页
Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To pr... Graphite as a promising anode candidate of K-ion batteries(KIBs)has been increasingly studied currently,but corresponding rate performance and cycling stability are usually inferior to amorphous carbon materials.To protect the layer structure and further boost performance,tempura-like carbon/carbon nanocomposite of graphite@pitch-derived S-doped carbon(G@PSC)is designed and prepared by a facile and low-temperature modified molten salt method.This robust encapsulation structure makes their respective advantages complementary to each other,showing mutual promotion of electrochemical performances caused by synergy effect.As a result,the G@PSC electrode is applied in KIBs,delivering impressive rate capabilities(465,408,370,332,290,and 227 m A h g^(-1)at 0.05,0.2,0.5,1,2,and 5 A g^(-1))and ultralong cyclic stability(163 m A g^(-1)remaining even after 8000 cycles at 2 A g^(-1)).On basis of ex-situ studies,the sectionalized K-storage mechanism with adsorption(pseudocapacitance caused by S doping)-intercalation(pitch-derived carbon and graphite)pattern is revealed.Moreover,the exact insights into remarkable rate performances are taken by electrochemical kinetics tests and density functional theory calculation.In a word,this study adopts a facile method to synthesize high-performance carbon/carbon nanocomposite and is of practical significance for development of carbonaceous anode in KIBs. 展开更多
关键词 K-ion batteries Anode materials carbon/carbon composite S doping Cyclic stability DFT calculation
下载PDF
Facile synthesis and performance of polypyrrole-coated sulfur nanocomposite as cathode materials for lithium/sulfur batteries 被引量:2
8
作者 Guanghui Yuan Haodong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第5期657-661,共5页
In situ chemical oxidation polymerization of pyrrole on the surface of sulfur particles was carried out to synthesize a sulfur/polypyrrole (SIPPy) nanocomposite with core-shell structure. The composite was character... In situ chemical oxidation polymerization of pyrrole on the surface of sulfur particles was carried out to synthesize a sulfur/polypyrrole (SIPPy) nanocomposite with core-shell structure. The composite was characterized by elemental analysis, X-ray diffraction, scanning/transmission electron microscopy, and electrochemical measurements. XRD and FTIR results showed that sulfur well dispersed in the core-shell structure and PPy structure was successfully obtained via in situ oxidative polymerization of pyrrole on the surface of sulfur particles. TEM observation revealed that PPy was formed and fixed to the surface of sulfur nanoparticle after polymerization, developing a well-defined core-shell structure and the thickness of PPy coating layer was in the range of 20-30 nm. In the composite, PPy worked as a conducting matrix as well as a coating agent, which confined the active materials within the electrode. Consequently, the as prepared SIPPy composite cathode exhibited good cycling and rate performances for rechargeable lithium/sulfur batteries. The resulting cell containing SIPPy composite cathode yields a discharge capacity of 1039 mAh·g^-1 at the initial cycle and retains 59% of this value over 50 cycles at 0.1 C rate. At 1 C rate, the SIPPy composite showed good cycle stability, and the discharge capacity was 475 mAh·g^-1 after 50 cycles. 展开更多
关键词 core-shell structure sulfur/polypyrrole composite cathode material lithium/sulfur battery energy storage
下载PDF
Nonlinear stability of advanced sandwich cylindrical shells comprising porous functionally graded material and carbon nanotube reinforced composite layers under elevated temperature 被引量:1
9
作者 H.V.TUNG L.T.N.TRANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第9期1327-1348,共22页
The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. T... The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. Two sandwich models corresponding to CNTRC and FGM face sheets are proposed. Carbon nanotubes(CNTs) in the CNTRC layer are embedded into a matrix according to functionally graded distributions. The effects of porosity in the FGM and the temperature dependence of properties of all constituent materials are considered. The effective properties of the porous FGM and CNTRC are determined by using the modified and extended versions of a linear mixture rule, respectively. The basic equations governing the stability problem of thin sandwich cylindrical shells are established within the framework of the Donnell shell theory including the von K’arm’an-Donnell nonlinearity. These equations are solved by using the multi-term analytical solutions and the Galerkin method for simply supported shells.The critical buckling temperatures and postbuckling paths are determined through an iteration procedure. The study reveals that the sandwich shell model with a CNTRC core layer and relatively thin porous FGM face sheets can have the best capacity of thermal load carrying. In addition, unlike the cases of mechanical loads, porosities have beneficial effects on the nonlinear stability of sandwich shells under the thermal load. It is suggested that an appropriate combination of advantages of FGM and CNTRC can result in optimal efficiency for advanced sandwich structures. 展开更多
关键词 carbon nanotube reinforced composite(CNTRC) porous functionally graded material(FGM) thermal instability cylindrical shell advanced sandwich model
下载PDF
The Packaging Materials with Carbon Nanotube/Polymer Composites
10
作者 Shen-Li-Fu Wern-Shirang Jou Huy-Zu Cheng 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期1-2,共2页
A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The ... A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The liquid crystal polymers (LCP) and melamine formaldehydes (MF) polymer are used to study the orientation effect of CNTs in various polymeric matrix.The influences of orientation,aspect ratio,and mass fraction of CNTs upon the shielding effectiveness (SE) of CNTs-composites are investigated.The higher the orientation,aspect ratio,and weight percentages of nano-materials are, the higher the SE of the carbon composites.The highest SE for the CNTs/LCP nano composite obtained is more than 62 dB. This results may lead to the developing for CPU IC chip packaging. 展开更多
关键词 packaging materials carbon nano-tube polymer composites
下载PDF
Structural Design and Analysis of a Booster Arm Made of a Carbon Fiber Reinforced Epoxy Composite Material
11
作者 Songhua Hu Lixiong Sun Hongying Xiong 《Fluid Dynamics & Materials Processing》 EI 2022年第4期1083-1088,共6页
An analysis of a booster arm made of a carbon fiber reinforced epoxy composite material is conducted by means of a finite element analysis method.The mechanical properties are also determined through stretching and co... An analysis of a booster arm made of a carbon fiber reinforced epoxy composite material is conducted by means of a finite element analysis method.The mechanical properties are also determined through stretching and compression performance tests.It is found that the surface treatment of the fibers causes the silane coupling agent to undergo a chemical reaction on the surface of the glass fiber.The used material succeeds in producing significant vibrations damping(vibration attenuation effect is superior to that obtained with conventional alloy materials). 展开更多
关键词 Study on the performance of carbon fiber composite material power arm structure power arm
下载PDF
Fabrication of Silicon/Carbon Composite Material with Silicon Waste and Carbon Nanofiber Applied in Lithium-Ion Battery
12
作者 Ying-Yang Li Che-Ya Wu +1 位作者 Tzu-Ying Lin Jenq-Gong Duh 《Journal of Environmental Protection》 2022年第1期150-160,共11页
Silicon (Si) is regarded as a promising material for lithium-ion battery anode because of high theoretical capacity. Nevertheless, Si faces particle pulverization and rapid capacity fading due to serious volume change... Silicon (Si) is regarded as a promising material for lithium-ion battery anode because of high theoretical capacity. Nevertheless, Si faces particle pulverization and rapid capacity fading due to serious volume change during the lithiation and the delithiation process. In this work, a silicon/carbon composite constituted to Si powder and carbon nanofiber (CNF) is produced to solve the above issues as a new design structure of anode material. The Si powder was recycled from the silicon slicing waste in photovoltaic industry and the CNF was from dry rice straws. By mixing the purified Si powder with CNF, the composite was synthesized by the freeze-drying method and calcination. In the cyclic test, Si adding with 1 wt% CNF showed 3091 mAh/g capacity in the first cycle and 1079 mAh/g capacity after 100 cycles at the current density of 0.5 A/g, which were both better than pristine Si. SEM images also show the composite structure can eliminate cracks on the surface of the electrode during cycling. CNF attaching on Si particles can increase specific surface area, so binder can easily combine the active materials and the conductive materials together. This strategy enhances the structure stability and prevents the electrode from delamination. 展开更多
关键词 composite material carbon Nanofiber Waste Silicon Anode material Lithium-Ion Battery
下载PDF
Application Strategy of Carbon Fiber Composite Materials in Bridge Reconstruction Project
13
作者 Yueqi Gao 《Journal of Architectural Research and Development》 2021年第1期1-3,共3页
Initially,the materials used in the process of bridge construction were mainly wood,stone,etc.,and gradually the concrete,steel and other types of special materials currently in-use were developed.With the current vig... Initially,the materials used in the process of bridge construction were mainly wood,stone,etc.,and gradually the concrete,steel and other types of special materials currently in-use were developed.With the current vigorous development of science,technology and social economy in China,the development of bridge projects has also been accelerated to a large extent.In recent years,China has not only studied on how to strengthen the performance of concrete,steel and other materials in bridge projects,but also the performance of the recently developed smart,nano-,fibrous and other types of materials.This paper focuses on the application strategy of carbon fiber composite materials in bridge reconstruction projects to serve as a reference. 展开更多
关键词 carbon fiber composite material Bridge reconstruction
下载PDF
Sulfur/carbon composites prepared with ordered porous carbon for Li-S battery cathode 被引量:3
14
作者 Xin Zhuang Yingjia Liu +2 位作者 Jian Chen Hao Chen Baolian Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期391-396,共6页
Ordered porous cabon with a 2-D hexagonal structure,high specific surface area and large pore volume was synthesized through a twostep heating method using tri-block copolymer as template and phenolic resin as carbon ... Ordered porous cabon with a 2-D hexagonal structure,high specific surface area and large pore volume was synthesized through a twostep heating method using tri-block copolymer as template and phenolic resin as carbon precursor.The results indicated the electrochemical performance of the sulfur/carbon composites prepared with the ordered porous carbon was significantly affected by the pore structure of the carbon.Both the specific capacity and cycling stability of the sulfur/carbon composites were improved using the bimodal micro/meso-porous carbon frameworks with high surface area.Its initial discharge capacity can be as high as 1200 mAh·g-1 at a current density of 167.5 mA·g-1The improved capacity retention was obtained during the cell cycling as well. 展开更多
关键词 lithium-sulfur battery sulfur/carbon composite ordered porous carbon bimodal micro/meso-porous carbon tri-block copolymer
下载PDF
Biomass-derived porous carbon materials for advanced lithium sulfur batteries 被引量:13
15
作者 Poting Liu Yunyi Wang Jiehua Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期171-185,共15页
Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical ... Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical properties, environmentally friendliness, and considerable economic value. Nature contributes to the biomass with bizarre microstructures with micropores, mesopores or hierarchical pores.Currently, it has been confirmed that biomass has great potential applications in energy storage devices,especially in lithium-sulfur(Li–S) batteries. In this article, the synthesis and function of BDNCs for Li–S batteries are presented, and the electrochemical effects of structural diversity, porosity and surface heteroatom doping of the carbons in Li-S batteries are discussed. In addition, the economic benefits, new trends and challenges are also proposed for further design excellent BDNCs for Li–S batteries. 展开更多
关键词 Biomass-derived carbon materials Lithium-sulfur battery Porous carbon Carbohydrate Cellulose
下载PDF
Novel Nanosized Adsorbing Composite Cathode Materials for the Next Generational Lithium Battery 被引量:1
16
作者 张勇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期234-239,共6页
A novel carbon-sulfur nano-composite material was synthesized by heating sublimed sulfur and high surface area activated carbon (HSAAC) under certain conditions. The physical and chemical per- formances of the novel... A novel carbon-sulfur nano-composite material was synthesized by heating sublimed sulfur and high surface area activated carbon (HSAAC) under certain conditions. The physical and chemical per- formances of the novel carbon-sulfur nano-composite were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and X-ray diffraction (XRD). The electrochemical performances of nano-composite were characterized by charge-discharge characteristic, cyclic voltammetry and electrochemical impendence spectroscopy (EIS). The experimental results indicate that the electrochemical capability of nano- composite material was superior to that of traditional S-containing composite material. The cathode made by carbon-sulfur nano-composite material shows a good cycle ability and a high specific charge-discharge capacity. The HSAAC shows a vital role in adsorbing sublimed sulfur and the polysulfides within the cathode and is an excellent electric conductor for a sulfur cathode and prevents the shuttle behavior of the lithium-sulfur battery. 展开更多
关键词 high surface area activated carbon sublimed sulfur lithium battery composite material adsorbing composite
下载PDF
Experimental Research on Behavior of Composite Material Projectile Penetrating Concrete Target 被引量:2
17
作者 钟卫洲 宋顺成 +4 位作者 张方举 张青平 黄西成 李思忠 卢永刚 《Transactions of Tianjin University》 EI CAS 2008年第6期430-433,共4页
Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336,m/s,447,m/s and 517,m/s.The angles between the perpendicu-lar of target surface and projectile axi... Projectile made of carbon fiber composite material shell and metal warhead penetrates concrete target at speeds of 336,m/s,447,m/s and 517,m/s.The angles between the perpendicu-lar of target surface and projectile axis are 0°and 30°.The thickness of concrete target is 200,mm and the compression strength is 30 MPa.The experimental results indicate that the strength of composite material structure is high.Composite projectile can go through concrete tar-get without fiber segregation and breakage.The percent fill is 18.5% in the composite material projectile.It is about twice as that of metal projectile,if the density of metal is taken as 7.8,g/cm3.Comparing with metal projectile,low-density,high-strength composite material can lessen projec-tile weight,improve charge-weight ratio of detonator and enhance destructive powder. 展开更多
关键词 复合材料 碳化纤维 混泥土 建筑材料
下载PDF
Determination of elastic moduli of composite medium containing bimaterial matrix and non-uniform inclusion concentrations
18
作者 Weitao SUN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第1期15-28,共14页
Reservoir porous rocks usually consist of more than two types of matrix materials, forming a randomly heterogeneous material. The determination of the bulk modulus of such a medium is critical to the elastic wave disp... Reservoir porous rocks usually consist of more than two types of matrix materials, forming a randomly heterogeneous material. The determination of the bulk modulus of such a medium is critical to the elastic wave dispersion and attenuation. The elastic moduli for a simple matrix-inclusion model are theoretically analyzed. Most of the efforts assume a uniform inclusion concentration throughout the whole single-material matrix. However, the assumption is too strict in real-world rocks. A model is developed to estimate the moduli of a heterogeneous bimaterial skeleton, i.e., the host matrix and the patchy matrix. The elastic moduli, density, and permeability of the patchy matrix differ from those of the surrounding host matrix material. Both the matrices contain dispersed particle inclusions with different concentrations. By setting the elastic constant and density of the particles to be zero, a double-porosity medium is obtained. The bulk moduli for the whole system are derived with a multi-level effective modulus method based on Hashin's work. The proposed model improves the elastic modulus calculation of reservoir rocks, and is used to predict the kerogen content based on the wave velocity measured in laboratory. The results show pretty good consistency between the inversed total organic carbon and the measured total organic carbon for two sets of rock samples. 展开更多
关键词 heterogeneous porous matrix composite material non-uniform inclusion concentration bulk modulus total organic carbon inversion
下载PDF
Forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by CNTs based on MCST with temperature-variable material properties 被引量:1
19
作者 R.Rostami M.Mohammadimehr +1 位作者 M.Ghannad A.Jalali 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第2期97-108,共12页
In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temper... In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temperature-variable material propertiesis presented. Also, the boundary conditions at two ends of nano-composite rotating pressurized microbeam reinforced by CNTs are considered as simply supported. The governing equations are obtained based on the Hamilton's principle and then computed these equations by using Navier's solution. The magnetic field is inserted in the thickness direction of the nano-composite microbeam. The effects of various parameters such as angular velocity, temperature changes, and pressure between of the inside and outside, the magnetic field, material length scale parameter, and volume fraction of nanocomposite microbeam on the natural frequency and response systemare studied. The results show that with increasing volume fraction of nano-composite microbeam, thickness, material length scale parameter, and magnetic fields, the natural frequency increases. The results of this research can be used for optimization of micro-structures and manufacturing sensors, displacement fluid, and drug delivery. 展开更多
关键词 Forced vibration analysis Nano-composite rotating pressurized microbeam carbon nanotubes Modify couple stress theory Temperature-variable material properties
下载PDF
The impact of the new composite material technology on the performance of the tennis rackets
20
《International English Education Research》 2013年第12期53-55,共3页
关键词 英语教学 教学方法 阅读教学 课外阅读 英语语法
下载PDF
上一页 1 2 112 下一页 到第
使用帮助 返回顶部