期刊文献+
共找到10,326篇文章
< 1 2 250 >
每页显示 20 50 100
Microfluidic-oriented synthesis of enriched iridium nanodots/carbon architecture for robust electrocatalytic nitrogen fixation
1
作者 Hengyuan Liu Xingjiang Wu +2 位作者 Yuhao Geng Xin Li Jianhong Xu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期544-555,共12页
Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-... Electrocatalytic nitrogen reduction reaction(NRR)is considered as a promising candidate to achieve ammonia synthesis because of clean electric energy,moderate reaction condition,safe operating process and harmless by-products.However,the chemical inertness of nitrogen and poor activated capacity on catalyst surface usually produce low ammonia yield and faradic efficiency.Herein,the microfluidic technology is proposed to efficiently fabricate enriched iridium nanodots/carbon architecture.Owing to in-situ co-precipitation reaction and microfluidic manipulation,the iridium nanodots/carbon nanomaterials possess small average size,uniform dispersion,high conductivity and abundant active sites,producing good proton activation and rapid electrons transmission and moderate adsorption/desorption capacity.As a result,the as-prepared iridium nanodots/carbon nanomaterials realize large ammonia yield of 28.73 μg h^(-1) cm^(-2) and faradic efficiency of 9.14%in KOH solution.Moreover,the high ammonia yield of 11.21 μg h^(-1) cm^(-2) and faradic efficiency of 24.30%are also achieved in H_(2)SO_(4) solution.The microfluidic method provides a reference for large-scale fabrication of nano-sized catalyst materials,which may accelerate the progress of electrocatalytic NRR in industrialization field. 展开更多
关键词 Iridium nanodots carbon Microfluidic technology Efficient synthesis Electrocatalytic nitrogen fixation
下载PDF
Effects of nitrogen deposition on the carbon budget and water stress in Central Asia under climate change
2
作者 HAN Qifei XU Wei LI Chaofan 《Journal of Arid Land》 SCIE CSCD 2024年第8期1118-1129,共12页
Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Centr... Atmospheric deposition of nitrogen(N)plays a significant role in shaping the structure and functioning of various terrestrial ecosystems worldwide.However,the magnitude of N deposition on grassland ecosystems in Central Asia still remains highly uncertain.In this study,a multi-data approach was adopted to analyze the distribution and amplitude of N deposition effects in Central Asia from 1979 to 2014 using a process-based denitrification decomposition(DNDC)model.Results showed that total vegetation carbon(C)in Central Asia was 0.35(±0.09)Pg C/a and the averaged water stress index(WSI)was 0.20(±0.02)for the whole area.Increasing N deposition led to an increase in the vegetation C of 65.56(±83.03)Tg C and slightly decreased water stress in Central Asia.Findings of this study will expand both our understanding and predictive capacity of C characteristics under future increases in N deposition,and also serve as a valuable reference for decision-making regarding water resources management and climate change mitigation in arid and semi-arid areas globally. 展开更多
关键词 carbon dynamics climate change grassland ecosystems nitrogen deposition water stress index
下载PDF
Enhanced stability of nitrogen-doped carbon-supported palladium catalyst for oxidative carbonylation of phenol
3
作者 Xiaojing Liu Ruohan Zhao +4 位作者 Hao Zhao Zhimiao Wang Fang Li Wei Xue Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期19-28,共10页
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle... Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts. 展开更多
关键词 Supported Pd catalyst N-doped carbon Amphiphilic triblock copolymer Pyridinic nitrogen STABILITY
下载PDF
Correlation and Pathway Analysis of the Carbon,Nitrogen,and Phosphorus in Soil-Microorganism-Plant with Main Quality Components of Tea(Camellia sinensis)
4
作者 Chun Mao Ji He +3 位作者 Xuefeng Wen Yangzhou Xiang Jihong Feng Yingge Shu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期487-502,共16页
The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.Howev... The contents of carbon(C),nitrogen(N),and phosphorus(P)in soil-microorganisms-plant significantly affect tea quality by altering the main quality components of tea,such as tea polyphenols,amino acids,and caffeine.However,few studies have quantified the effects of these factors on the main quality components of tea.The study aimed to explore the interactions of C,N,and P in soil-microorganisms-plants and the effects of these factors on the main quality components of tea by using the path analysis method.The results indicated that(1)The contents of C,N,and P in soil,microorganisms,and tea plants were highly correlated and collinear,and showed significant correlations with the main quality components of tea.(2)Optimal regression equations were established to esti-mate tea polyphenol,amino acid,catechin,caffeine,and water extract content based on C,N,and P contents in soil,microorganisms,and tea plants(R^(2)=0.923,0.726,0.954,0.848,and 0.883,respectively).(3)Pathway analysis showed that microbial biomass phosphorus(MBP),root phosphorus,branch nitrogen,and microbial biomass carbon(MBC)were the largest direct impact factors on tea polyphenol,catechin,water extracts,amino acid,and caffeine content,respectively.Leaf carbon,root phosphorus,and leaf nitrogen were the largest indirect impact factors on tea polyphenol,catechin,and water extract content,respectively.Leaf carbon indirectly affected tea polyphenol content mainly by altering MBP content.Root phosphorus indirectly affected catechin content mainly by altering soil organic carbon content.Leaf nitrogen indirectly affected water extract content mainly by altering branch nitrogen content.The research results provide the scientific basis for reasonable fertilization in tea gardens and tea quality improvement. 展开更多
关键词 Soil-microorganisms-plant system carbon nitrogen PHOSPHORUS tea quality path analysis
下载PDF
Carbon sequestration rate,nitrogen use efficiency and rice yield responses to long-term substitution of chemical fertilizer by organic manure in a rice–rice cropping system 被引量:2
5
作者 Nafiu Garba HAYATU LIU Yi-ren +7 位作者 HAN Tian-fu Nano Alemu DABA ZHANG Lu SHEN Zhe LI Ji-wen Haliru MUAZU Sobhi Faid LAMLOM ZHANG Hui-min 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第9期2848-2864,共17页
Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical... Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China. 展开更多
关键词 carbon sequestration chemical fertilizer long term organic manure nitrogen use efficiency paddy rice
下载PDF
Effects of tree size and organ age on variations in carbon,nitrogen,and phosphorus stoichiometry in Pinus koraiensis
6
作者 Yanjun Wang Guangze Jin Zhili Liu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第3期155-165,共11页
Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutr... Carbon(C),nitrogen(N),and phosphorus(P)are of fundamental importance for growth and nutrient dynamics within plant organs and deserve more attention at regional to global scales.However,our knowledge of how these nutrients vary with tree size,organ age,or root order at the individual level remains limited.We determined C,N,and P contents and their stoichiometric ratios(i.e.,nutrient traits)in needles,branches,and fine roots at different organ ages(0-3-year-old needles and branches)and root orders(1st-4th order roots)from 64 Pinus koraiensis of varying size(Diameter at breast height ranged from 0.3 to 100 cm)in northeast China.Soil factors were also measured.The results show that nutrient traits were regulated by tree size,organ age,or root order rather than soil factors.At a whole-plant level,nutrient traits decreased in needles and fine roots but increased in branches with tree size.At the organ level,age or root order had a negative effect on C,N,and P and a positive effect on stoichiometric ratios.Our results demonstrate that nutrient variations are closely related to organ-specific functions and ecophysiological processes at an individual level.It is suggested that the nutrient acquisition strategy by younger trees and organ fractions with higher nutrient content is for survival.Conversely,nutrient storage strategy in older trees and organ fractions are mainly for steady growth.Our results clarified the nutrient utilization strategies during tree and organ ontogeny and suggest that tree size and organ age or root order should be simultaneously considered to understand the complexities of nutrient variations. 展开更多
关键词 Tree size Organ age(or root order) carbon(C) nitrogen(N) Phosphorus(P) Pinus koraiensis
下载PDF
Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil
7
作者 CHANG Fang-di WANG Xi-quan +7 位作者 SONG Jia-shen ZHANG Hong-yuan YU Ru WANG Jing LIU Jian WANG Shang JI Hong-jie LI Yu-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1870-1882,共13页
Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,t... Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.Therefore,a four-year (2015–2018) field experiment was conducted with four levels (i.e.,0,6,12and 18 Mg ha~(–1)) of straw returned as an interlayer.Compared with no straw interlayer (CK),straw addition increased SOC concentration by 14–32 and 11–57%in the 20–40 and 40–60 cm soil layers,respectively.The increases in soil TN concentration (8–22 and 6–34%in the 20–40 and 40–60 cm soil layers,respectively) were lower than that for SOC concentration,which led to increased soil C:N ratio in the 20–60 cm soil depth.Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm),which promoted uniform distributions of SOC and TN in the soil profile.Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.Generally,compared with other treatments,the application of 12 Mg ha~(–1) straw had higher SOC,TN and C:N ratio,and lower soil stratification ratio in the2015–2017 period.The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years,and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils. 展开更多
关键词 straw addition INTERLAYER soil organic carbon soil nitrogen C:N ratio saline soil
下载PDF
Preparation of activated carbon from sunflower straw through H_(3)PO_(4) activation and its application for acid fuchsin dye adsorption 被引量:1
8
作者 Wen-de Zhao Li-ping Chen Yan Jiao 《Water Science and Engineering》 EI CAS CSCD 2023年第2期192-202,共11页
With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared... With the development circular economy, the use of agricultural waste to prepare biomass materials to remove pollutants has become a research hotspot. In this study, sunflower straw activated carbon (SSAC) was prepared by the one-step activation method, with sunflower straw (SS) used as the raw material and H3PO4 used as the activator. Four types of SSAC were prepared with impregnation ratios (weight of SS to weight of H3PO4) of 1:1, 1:2, 1:3, and 1:5, corresponding to SSAC1, SSAC2, SSAC3, and SSAC4, respectively. The adsorption process of acid fuchsin (AF) in water using the four types of SSAC was studied. The results showed that the impregnation ratio significantly affected the structure of the materials. The increase in the impregnation ratio increased the specific surface area and pore volume of SSAC and improved the adsorption capacity of AF. However, an impregnation ratio that was too large led to a decrease in specific surface area. SSAC3, with an impregnation ratio of 1:3, had the largest specific surface area (1 794.01 m2/g), and SSAC4, with an impregnation ratio of 1:5, exhibited the smallest microporosity (0.052 7 cm3/g) and the largest pore volume (2.549 cm3/g). The adsorption kinetics of AF using the four types of SSAC agreed with the quasi-second-order adsorption kinetic model. The Langmuir isotherm model was suitable to describe SSAC3 and SSAC4, and the Freundlich isotherm model was appropriate to describe SSAC1 and SSAC2. The result of thermodynamics showed that the adsorption process was spontaneous and endothermic. At 303 K, SSAC4 showed a removal rate of 97.73% for 200-mg/L AF with a maximum adsorption capacity of 2 763.36 mg/g, the highest among the four types of SSAC. This study showed that SAAC prepared by the H3PO4-based one-step activation method is a green and efficient carbon material and has significant application potential for the treatment of dye-containing wastewater. 展开更多
关键词 Acid fuchsin Activated carbon Adsorption Sunflower straw Phosphoric acid activation Impregnation ratio
下载PDF
Preparation of nitrogen and sulfur co-doped ultrathin graphitic carbon via annealing bagasse lignin as potential electrocatalyst towards oxygen reduction reaction in alkaline and acid media 被引量:5
9
作者 Yixing Shen Feng Peng +3 位作者 Yonghai Cao Jianliang Zuo Hongjuan Wang Hao Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期33-42,共10页
Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using... Renewable lignin used for synthesizing materials has been proven to be highly potential in specific electrochemistry.Here,we report a simple method to synthesize nitrogen and sulfur co-doped carbon nanosheets by using bagasse lignin,denoted as lignin-derived carbon(LC).By adjusting the ratio of nitrogen source and annealing temperature,we obtained the ultrathin graphitic lignin carbon(LC-4-1000)with abundant wrinkles with high surface area of 1208 m2g_1 and large pore volume of 1.40 cm3g_1.In alkaline medium,LC-4-1000 has more positive half-wave potential and nearly current density compared to commercial Pt/C for oxygen reduction reaction(ORR).More importantly,LC-4-1000 also exhibits comparable activity and superior stability for ORR in acid medium due to its high graphitic N ratio and a direct four electron pathway for ORR.This study develops a cost-effective and highly efficient method to prepare biocarbon catalyst for ORR in fuel cells. 展开更多
关键词 ELECTROCATALYST Biocarbon LIGNIN nitrogen and SULFUR CO-DOPED carbon Oxygen reduction reaction
下载PDF
Characteristics of Soil Organic Carbon, Total Nitrogen, and C/N Ratio in Chinese Apple Orchards 被引量:7
10
作者 Shunfeng Ge Haigang Xu +1 位作者 Mengmeng Ji Yuanmao Jiang 《Open Journal of Soil Science》 2013年第5期213-217,共5页
Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carb... Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carbon and nitrogen nutrition balance of soils. We studied the characteristics of soil organic carbon and total nitrogen by investigating a large number of apple orchards in major apple production areas in China. High apple orchard soil organic carbon content was observed in the provinces of Heilongjiang, Xinjiang, and Yunnan, whereas low content was found in the provinces of Shandong, Henan, Hebei, and Shaanxi, with the values ranging between 6.44 and 7.76 g·kg-1. Similar to soil organic carbon, soil total nitrogen content also exhibited obvious differences in the 12 major apple producing provinces. Shandong apple orchard soil had the highest total nitrogen content (1.26 g·kg-1), followed by Beijing (1.23 g·kg-1). No significant difference was noted between these two regions, but their total nitrogen content was significantly higher than the other nine provinces, excluding Yunnan. The soil total nitrogen content for Xinjiang, Heilongjiang, Hebei, Henan, and Gansu was between 0.87 and 1.03 g·kg-1, which was significantly lower than that in Shandong and Beijing, but significantly higher than that in Liaoning, Shanxi, and Shaanxi. Six provinces exhibited apple orchard soil C/N ratio higher than 10, including Heilongjiang (15.42), Xinjiang (13.38), Ningxia (14.45), Liaoning (12.24), Yunnan (11.03), and Gansu (10.63). The soil C/N ratio was below 10 in the remaining six provinces, in which the highest was found in Shaanxi (9.47), followed by Beijing (8.98), Henan (7.99), and Shanxi (7.62), and the lowest was found in Hebei (6.80) and Shandong (6.05). Therefore, the improvement of soil organic carbon should be given more attention to increase the steady growth of soil C/N ratio. 展开更多
关键词 CHINESE APPLE ORCHARD Soil ORGANIC carbon Total nitrogen C/N ratio
下载PDF
Dependence of Wheat and Rice Respiration on Tissue Nitrogen and the Corresponding Net Carbon Fixation Efficiency Under Different Rates of Nitrogen Application 被引量:6
11
作者 孙文娟 黄耀 +2 位作者 陈书涛 邹建文 郑循华 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第1期55-64,共10页
To quantitatively address the role of tissue N in crop respiration under various agricultural practices, and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respirat... To quantitatively address the role of tissue N in crop respiration under various agricultural practices, and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respiration, and hence net carbon fixation efficiency (Encf), pot and field experiments were carried out for an annual rotation of a rice-wheat cropping system from 2001 to 2003. The treatments of the pot experiments included fertilizer N application, sowing date and planting density. Different rates of N application were tested in the field experiments. Static opaque chambers were used for sampling the gas. The respiration as CO2 emission was detected by a gas chromatograph. A successive biomass clipping method was employed to determine the crop autotrophic respiration coefficient (Ra). Results from the pot experiments revealed a linear relationship between Ra and tissue N content as Ra = 4.74N-1.45 (R^2= 0.85, P 〈 0.001). Measurements and calculations from the field experiments indicated that fertilizer N application promoted not only biomass production but also increased the respiration of crops. A further investigation showed that the increase of carbon loss in terms of respiration owing to fertilizer N application exceeded that of net carbon gain in terms of aboveground biomass when fertilizer N was applied over a certain rate. Consequently, the Encf declined as the N application rate increased. 展开更多
关键词 crop nitrogen application net carbon fixation efficiency tissue N RESPIratioN
下载PDF
Effects of different tillage and straw retention practices on soil aggregates and carbon and nitrogen sequestration in soils of the northwestern China 被引量:5
12
作者 WU Jun Yeboah STEPHEN +6 位作者 CAI Liqun ZHANG Renzhi QI Peng LUO Zhuzhu LI Lingling XIE Junhong DONG Bo 《Journal of Arid Land》 SCIE CSCD 2019年第4期567-578,共12页
Soil tillage and straw retention in dryland areas may affect the soil aggregates and the distribution of total organic carbon. The aims of this study were to establish how different tillage and straw retention practic... Soil tillage and straw retention in dryland areas may affect the soil aggregates and the distribution of total organic carbon. The aims of this study were to establish how different tillage and straw retention practices affect the soil aggregates and soil organic carbon(SOC) and total nitrogen(TN) contents in the aggregate fractions based on a long-term(approximately 15 years) field experiment in the semi-arid western Loess Plateau, northwestern China. The experiment included four soil treatments, i.e., conventional tillage with straw removed(T), conventional tillage with straw incorporated(TS), no tillage with straw removed(NT) and no tillage with straw retention(NTS), which were arranged in a complete randomized block design. The wet-sieving method was used to separate four size fractions of aggregates, namely, large macroaggregates(LA, >2000 μm), small macroaggregates(SA, 250–2000 μm), microaggregates(MA, 53–250 μm), and silt and clay(SC, <53 μm). Compared to the conventional tillage practices(including T and TS treatments), the percentages of the macroaggregate fractions(LA and SA) under the conservation tillage practices(including NT and NTS treatments) were increased by 41.2%–56.6%, with the NTS treatment having the greatest effect. For soil layers of 0–5, 5–10 and 10–30 cm, values of the mean weight diameter(MWD) under the TS and NTS treatments were 10.68%, 13.83% and 17.65%, respectively. They were 18.45%, 19.15% and 14.12% higher than those under the T treatment, respectively. The maximum contents of the aggregate-associated SOC and TN were detected in the SA fraction, with the greatest effect being observed for the NTS treatment. The SOC and TN contents were significantly higher under the NTS and TS treatments than under the T treatment. Also, the increases in SOC and TN levels were much higher in the straw-retention plots than in the straw-removed plots. The macroaggregates(including LA and SA fractions) were the major pools for SOC and TN, regardless of tillage practices, storing 3.25–6.81 g C/kg soil and 0.34–0.62 g N/kg soil. Based on the above results, we recommend the NTS treatment as the best option to boost soil aggregates and to reinforce carbon and nitrogen sequestration in soils in the semi-arid western Loess Plateau of northwestern China. 展开更多
关键词 SOIL aggregates SOIL organic carbon total nitrogen STRAW management TILLAGE practices LOESS Plateau
下载PDF
Carbon,Nitrogen,and Sulfur Contents in Marine Phytoplankton Cells and Biomass Conversion
13
作者 CHEN Wenqing YANG Shimin +1 位作者 SHANG Jie WANG Jinwen 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第3期851-862,共12页
In this study,we isolated and cultured phytoplankton along the coast of China and measured the cellular carbon,nitrogen,and sulfur contents under four temperatures.The results showed that the contents of the cellular ... In this study,we isolated and cultured phytoplankton along the coast of China and measured the cellular carbon,nitrogen,and sulfur contents under four temperatures.The results showed that the contents of the cellular elements varied widely among different phytoplankton.We found that temperature is one of the important factors affecting the carbon,nitrogen,and sulfur contents in phytoplankton cells;however,the degree of influence of temperature is different for different kinds of phytoplankton.By measuring the nitrogen content in cells,we found that the C:N ratio indirectly measured in the experiment fluctuated in the range of 3.50-8.97,and the average C:N ratio was 5.52.In this experiment,we accurately measured the cell elemental contents at different temperatures and transformed the cell count results into carbon,nitrogen,and sulfur contents to express the biomass.This method ensures that the contribution of species that are small in number but with a large cell volume in biomass is considered.Moreover,this method comprehensively considers the interspecific differences of species and the uneven distribution of elements in phytoplankton cells,which is of significance in the estimation of marine carbon and nitrogen budget.The distribution of nitrogen content in marine phytoplankton can well indicate the marine eutrophication caused by human activities.Climate change can affect the community structure and element composition of marine phytoplankton,meanwhile marine carbon and nitrogen element can regulate the climate to a certain extent. 展开更多
关键词 PHYTOPLANKTON temperature gradient carbon element nitrogen element sulfur element element content distribution
下载PDF
Response of soil respiration to short-term changes in precipitation and nitrogen addition in a desert steppe
14
作者 MA Jinpeng PANG Danbo +4 位作者 HE Wenqiang ZHANG Yaqi WU Mengyao LI Xuebin CHEN Lin 《Journal of Arid Land》 SCIE CSCD 2023年第9期1084-1106,共23页
Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the ef... Changes in precipitation and nitrogen(N)addition may significantly affect the processes of soil carbon(C)cycle in terrestrial ecosystems,such as soil respiration.However,relatively few studies have investigated the effects of changes in precipitation and N addition on soil respiration in the upper soil layer in desert steppes.In this study,we conducted a control experiment that involved a field simulation from July 2020 to December 2021 in a desert steppe in Yanchi County,China.Specifically,we measured soil parameters including soil temperature,soil moisture,total nitrogen(TN),soil organic carbon(SOC),soil microbial biomass carbon(SMBC),soil microbial biomass nitrogen(SMBN),and contents of soil microorganisms including bacteria,fungi,actinomyces,and protozoa,and determined the components of soil respiration including soil respiration with litter(RS+L),soil respiration without litter(RS),and litter respiration(RL)under short-term changes in precipitation(control,increased precipitation by 30%,and decreased precipitation by 30%)and N addition(0.0 and 10.0 g/(m^(2)·a))treatments.Our results indicated that short-term changes in precipitation and N addition had substantial positive effects on the contents of TN,SOC,and SMBC,as well as the contents of soil actinomyces and protozoa.In addition,N addition significantly enhanced the rates of RS+L and RS by 4.8%and 8.0%(P<0.05),respectively.The increase in precipitation markedly increased the rates of RS+L and RS by 2.3%(P<0.05)and 5.7%(P<0.001),respectively.The decrease in precipitation significantly increased the rates of RS+L and RS by 12.9%(P<0.05)and 23.4%(P<0.001),respectively.In contrast,short-term changes in precipitation and N addition had no significant effects on RL rate(P>0.05).The mean RL/RS+L value observed under all treatments was 27.63%,which suggested that RL is an important component of soil respiration in the desert steppe ecosystems.The results also showed that short-term changes in precipitation and N addition had significant interactive effects on the rates of RS+L,RS,and RL(P<0.001).In addition,soil temperature was the most important abiotic factor that affected the rates of RS+L,RS,and RL.Results of the correlation analysis demonstrated that the rates of RS+L,RS,and RL were closely related to soil temperature,soil moisture,TN,SOC,and the contents of soil microorganisms,and the structural equation model revealed that SOC and SMBC are the key factors influencing the rates of RS+L,RS,and RL.This study provides further insights into the characteristics of soil C emissions in desert steppe ecosystems in the context of climate change,which can be used as a reference for future related studies. 展开更多
关键词 soil respiration litter respiration nitrogen deposition soil carbon soil microorganisms climate change desert steppe ecosystems
下载PDF
High-performance SSZ-13 membranes prepared using ball-milled nanosized seeds for carbon dioxide and nitrogen separations from methane 被引量:3
15
作者 Xinping Li Yaowei Wang +4 位作者 Tangyin Wu Shichao Song Bin Wang Shenglai Zhong Rongfei Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第5期1285-1292,共8页
SSZ-13 membranes with high separation performances were prepared using ball-milled nanosized seeds by once hydrothermal synthesis.Separation performances of SSZ-13 membranes in CO2/CH4 and N2/CH4 mixtures were enhance... SSZ-13 membranes with high separation performances were prepared using ball-milled nanosized seeds by once hydrothermal synthesis.Separation performances of SSZ-13 membranes in CO2/CH4 and N2/CH4 mixtures were enhanced after synthesis modification.Single-gas permeances of CO2,N2 and CH4 and ideal selectivities were recorded through SSZ-13 membranes.The effects of temperature,pressure,feed flow rate and humidity on separation performance of the membranes were discussed.Three membranes prepared after synthesis modifications had an average CO2 permeance of 1.16×10-6 mol·(m2·s·Pa)-1(equal to 3554 GPU)with an average CO2/CH4 selectivity of 213 in a 50 vol%/50 vol%CO2/CH4 mixture.It suggests that membrane synthesis has a good reproducible.The membrane also displayed a N2 permeance of 1.07×10-7 mol·(m2·s·Pa)-1(equal to 320 GPU)with a N2/CH4 selectivity of 13 for a 50 vol%/50 vol%N2/CH4 mixture.SSZ-13 membrane displayed stable and good separation performance in the wet CO2/CH4 mixture for a long test period over 100 h at 348 K.The current SSZ-13 membranes show great potentials for the simultaneous removals of CO2 and N2 in natural gas purification as a facile process suitable for industrial application. 展开更多
关键词 carbon/methane separation nitrogen/methane separation CHA membrane Natural gas purification
下载PDF
Smart Interfacing between Co-Fe Layered Double Hydroxide and Graphitic Carbon Nitride for High-efficiency Electrocatalytic Nitrogen Reduction
16
作者 Xiaohui Wu Lu Tang +5 位作者 Yang Si Chunlan Ma Peng Zhang Jianyong Yu Yitao Liu Bin Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期62-69,共8页
Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction... Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction. 展开更多
关键词 density functional theory electrocatalytic nitrogen reduction graphitic carbon nitride interface engineering layered double hydroxide
下载PDF
Carbon isotope ratios of n-alkanoic acids: new organic proxies for paleo-productivity in Antarctic ponds
17
作者 CHEN Xin JIN Jing +5 位作者 NIE Yaguang ZHANG Jifeng DONG Liang HUANG Xianyu Steven D()EMSLIE LIU Xiaodong 《Advances in Polar Science》 CSCD 2023年第4期304-317,共14页
Primary productivity in the Antarctic aquatic environment with simple ecosystems is sensitive to climate and environmental fluctuations.We investigatedδ13C values for n-alkanoic acids derived from phototrophic organi... Primary productivity in the Antarctic aquatic environment with simple ecosystems is sensitive to climate and environmental fluctuations.We investigatedδ13C values for n-alkanoic acids derived from phototrophic organisms in a lacustrine sediment core(IIL3)to indicate primary productivity in ponds on Inexpressible Island in the western Ross Sea,Antarctica.Short-chain n-alkanoic acids(C14–C18)were abundant in the IIL3 sediment profile.The carbon isotope ratios of short-chain n-alkanoic acids in the sediment samples and floating microbial mats were similar,indicating that the short-chain n-alkanoic acids in the IIL3 sediment profile predominantly originated from phototrophic organisms.Theδ13C values for the short-chain n-alkanoic acids varied widely through the sediment profile,and 13C-enrichment of n-alkanoic acids was most likely related to high productivity due to carbon-limited conditions caused by enhanced photosynthetic efficiency.Theδ13C values for the n-alkanoic acids changed over the past 3200 years in similar ways to organic proxies for aquatic productivity(n-alkanoic acid and sterol sedimentary fluxes).C16 n-alkanoic acid was enriched in 13C in periods of high aquatic productivity~750–1650 and 3000–3200 a BP but depleted in 13C in periods of relatively low productivity~150–600 and 2500–3000 a BP.The results indicated that carbon isotope ratios of lipids from phototrophic organisms could be used as new proxies to reconstruct paleo-productivity in Antarctic lakes and ponds and therefore improve our understanding of past climate changes. 展开更多
关键词 East Antarctica lipid biomarkers carbon isotopic ratios pond primary productivity climate change
下载PDF
Carbon and Nitrogen Mineralisation of a Lixisol in South Sudan Zone of Burkina Faso
18
作者 Abdramane Sanon Alain P. K. Gomgnimbou +4 位作者 Kalifa Coulibaly Fidele K. Zongo Tièro-Wè Chris Julius Dabire Wilfiried Sanou Hassan B. Nacro 《Agricultural Sciences》 2023年第11期1547-1560,共14页
In today’s environment where agriculture needs to produce sustainably, local fertilizer resources must be encouraged to achieve multiple crop performance and environmental goals. The purpose of this study was to inve... In today’s environment where agriculture needs to produce sustainably, local fertilizer resources must be encouraged to achieve multiple crop performance and environmental goals. The purpose of this study was to investigate the effects of combined inputs of biowaste and inorganic fertilisers on the mineralization of carbon and nitrogen of a Lixisol under continuous upland rice growing conditions. To this end, agronomic trials were set up in 2018 and 2019, using a Fisher randomized complete block design with 6 treatments and four replications at Farako-ba research station. The treatments were: T1 (Control), T2 (NPK + Urea), T3 (7500 kgha of Chicken droppings);T4 (7500 kg/ha of chicken droppings + 100 kg/ha of urea);T5 (7500 kg/ha of chicken droppings + 500 kg/ha of Burkina Phosphate);T6 (7500 kg/ha of chicken droppings + 500 kg/ha of Burkina Phosphate + 100 kg/ha of urea). Highest respirometry was observed in treatments T3, T4 and T6 and treatment T4 significantly increased the mineralization coefficient by 15% after 21 days of incubation. T4 and T6 resulted in increases in ammonium ion of 74.15% and 100%, respectively, compared to the control. Likewise, treatments T4 and T6 resulted in a significant increase in nitrate ion of 104.83 and 103.25%, respectively. Biowaste combined with inorganic fertilizers may have a capacity to improve the availability of leachate nutrients under upland rice conditions. 展开更多
关键词 BIO-WASTE RICE carbone nitrogen and Mineralisation
下载PDF
Nitrogen Dioxide, Carbon Monoxide, Natural and Anthropomorphic Effects, and Earth’s Changing Climate
19
作者 Shreyas Banaji 《Atmospheric and Climate Sciences》 CAS 2023年第1期62-71,共10页
This study will both compare and contrast the characteristics and roles of two pollutants: nitrogen dioxide and carbon monoxide. It will begin by tracing each gas’ negative contributions to the Earth’s spheres, as w... This study will both compare and contrast the characteristics and roles of two pollutants: nitrogen dioxide and carbon monoxide. It will begin by tracing each gas’ negative contributions to the Earth’s spheres, as well as relate any negative links that each plays concerning human activity, health, and interaction with the environment. It will include an in-depth analysis of what the proliferation of such toxic gases indicates about human production and causality, plus reflect on any current attempts being made to improve the effects of these pollutants on the environment. This examination will also inspect three NASA missions, i.e., MOPITT/Terra, AIRS/Aqua, and OMI/Aura, the aim of which, among many other tasks, is to detect pollutants within the Earth’s various spheres, as well as analyze weather anomalies, improve prediction methodology, and chronicle meteorological patterns for future study. It will also cover some of the goals, engineering breakthroughs, and in one case, the limitations, of these three satellite missions. Finally, it should be noted that in all stages of this discussion, the author’s main aim will be to focus on the positives that need to be implemented in order to improve the current situations that both anthropogenic and natural disasters have created for the planet. 展开更多
关键词 carbon Monoxide nitrogen Dioxide Climate Change ATMOSPHERE Greenhouse Gases
下载PDF
Effects of soil nitrate:ammonium ratio on plant carbon:nitrogen ratio and growth rate of Artemisia sphaerocephala seedlings 被引量:1
20
作者 Rong Li XingDong He +4 位作者 PingPing Xue HuaCong Ci Wei Wu YuBao Gao HaLin Zhao 《Research in Cold and Arid Regions》 2010年第5期445-454,共10页
Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two question... Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant. 展开更多
关键词 soil nitrate: ammonium ratio plant carbon nitrogen ratio growth rate nitrogen limitation plant community succession
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部