期刊文献+
共找到204,820篇文章
< 1 2 250 >
每页显示 20 50 100
Fabrication and stiffness optimization of carbon-based composite double polymer compliant electrode
1
作者 WU Xiaojun WEN Binhua +1 位作者 TONG Xin ZHANG Ying 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期471-479,共9页
A manufacturing method is proposed for carbon based composite double polymer compliant electrode.The stiffness of this compliant electrode is changed by adjusting the mass fraction of carbon black and the ratios betwe... A manufacturing method is proposed for carbon based composite double polymer compliant electrode.The stiffness of this compliant electrode is changed by adjusting the mass fraction of carbon black and the ratios between Ecoflex20 and RT625.Tensile machine is used to test its ductility and hardness.The conductivity is measured through the source table.Finally,it is printed on the dielectric elastomers(DE)film,and the high-voltage amplifier is used for dielectric elastomers actuators(DEAs)dynamics testing.The results show that the compliant electrode has high tensile properties(>200%),low stiffness(<300 kPa)and well conductivity(0.0493 S/cm).It is proved that the DEAs displacement output is up to 1.189 mm by this compliant electrode under dynamic response,which is 1.64 times and 1.32 times of the same type.Moreover,this formula extends the curing time of the original compliant electrode ink.It can provide a reference for the production of compliant electrode and DEAs in the future. 展开更多
关键词 dielectric elastomer actuators(DEA) carbon-based composite double polymer compliant electrode stiffness conductivity
下载PDF
Functional porous carbon-based composite electrode materials for lithium secondary batteries 被引量:5
2
作者 Kai Zhang Zhe Hu Jun Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期214-225,共12页
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great break... The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries. 展开更多
关键词 porous carbons functional materials composite electrode materials synthetic method lithium secondary batteries
下载PDF
Recent applications of carbon-based composites in defence industry: A review 被引量:7
3
作者 M.M.Harussani S.M.Sapuan +2 位作者 Gohar Nadeem Tahrim Rafin W.Kirubaanand 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1281-1300,共20页
Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and m... Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and mechanical stability, and its eco-friendly nature. Carbon-based composite which incorporating with various carbonaceous materials such as coke, char, black carbon, activated carbon, carbon fibre and other carbon nanomaterials (carbon nanotubes, carbon nanofibres, graphene and graphite) are the greatest viable option for the development of advanced defence technologies. In this review article the characteristics of carbon-based materials and its composites are discussed for their distinct application in defence sectors;aeronautics, maritime, automotive, electronics, energy storage, electromagnetic interference (EMI) shielding and structures. The origin of carbonaceous materials and its production techniques were discussed. Carbon-based composites have a promising future in defence technology, particularly in chemical sensors, drug delivery agents, radar technologies, and nanocomposites due to their low cost, easy availability, flexibility in design and processing. 展开更多
关键词 Carbon materials CHAR CARBON CNT GRAPHENE composite Defence technology
下载PDF
Advances in core–shell engineering of carbon-based composites for electromagnetic wave absorption 被引量:9
4
作者 Lixue Gai Honghong Zhao +4 位作者 Fengyuan Wang Pan Wang Yonglei Liu Xijiang Han Yunchen Du 《Nano Research》 SCIE EI CSCD 2022年第10期9410-9439,共30页
Electromagnetic(EM)absorption is paving the way to overcome the challenges related to conventional shielding strategy against EM pollution through sustainable energy dissipation.As characteristic functional media that... Electromagnetic(EM)absorption is paving the way to overcome the challenges related to conventional shielding strategy against EM pollution through sustainable energy dissipation.As characteristic functional media that can interact with electric or magnetic field branch,EM wave absorption materials(EWAMs)have received extensive attention and realized considerable development in the past two decades,where carbon-based composites are always considered as promising candidates for high-performance EMAWs due to their synergetic loss mechanism as well as diversified composition and microstructure design.Recent progress indicates that there is more and more interest in the fabrication of carbon-based composites with unique core–shell configuration.On one hand,core–shell configuration usually ensures good chemical homogeneity of final products and provides some positive protections for the components with susceptibility to corrosion,on the other hand,it creates enough heterogeneous interfaces between different EM components,which may bring enhanced polarization effect and intensify the consumption of EM energy.In this review,we firstly introduce EM wave absorption theory,and then highlight the advances of core–shell engineering in carbonbased composites in terms of built-in carbon cores and built-out carbon shells.Moreover,we also show some special core–shell carbon-based composites,including carbon/carbon composites,assembled composites,and decorated composites.After analyzing EM absorption performance of some representative composites,we further propose some challenges and perspectives on the development of core–shell carbon-based composites. 展开更多
关键词 carbon-based composites core-shell configuration synergetic effect interfacial polarization electromagnetic(EM)absorption performance
原文传递
MOF-derived multi-interface carbon-based composites with enhanced polarization loss and efficient microwave absorption 被引量:2
5
作者 Hongjiao Qu Peng Zheng +6 位作者 Tao Wang Xingyu Yu Junjie Pan Xiaoli Fan Tengfei Zhang Xin Sun Jianping He 《International Journal of Smart and Nano Materials》 SCIE EI 2022年第3期465-480,共16页
Metal-organic framework materials(MOFs)have been widely stu-died because of their adjustable composition and controllable structure in the field of microwave absorption(MA).Therein,Prussian blue analogs(PBA)have attra... Metal-organic framework materials(MOFs)have been widely stu-died because of their adjustable composition and controllable structure in the field of microwave absorption(MA).Therein,Prussian blue analogs(PBA)have attracted the attention of researchers with ultra-high metal content.However,the attenua-tion ability of microwave for PBA-based composites is still unsatis-factory up to now.Therefore,the NiFe/CoFe@C composites were prepared by carbonizing polymetallic PBA(NiCoFe PBA)materials in this work,and the influence of different metal alloy components on MA was explored by adjusting the ratio of metal ions(Ni^(2+)/Co^(2+)).Moreover,the NiFe/CoFe@C composites have rich interfaces and enhance the polarization loss due to the introduction of Ni and it has an optimal performance at 2.7 mm that is the reflection loss(RL)is−41.49 dB and an effective absorption bandwidth(EAB)is 7.12 GHz with 1/1(Ni^(2+)/Co^(2+)).The above data provides a research idea for obtaining light and efficient absorbers. 展开更多
关键词 Prussian blue analogs carbon-based composites metal alloy polarization loss microwave absorption
原文传递
Adsorptive removal of PPCPs from aqueous solution using carbon-based composites:A review
6
作者 Tong Wang Jie He +3 位作者 Jian Lu Yi Zhou Zhaohui Wang Yanbo Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3585-3593,共9页
Far-ranging and improper uses of pharmaceuticals and personal care products(PPCPs)over the last few decades have led to severe water contamination that imposes serious effects on human beings and the ecological system... Far-ranging and improper uses of pharmaceuticals and personal care products(PPCPs)over the last few decades have led to severe water contamination that imposes serious effects on human beings and the ecological system.Therefore,there is an increasing demand for a highly-efficient and environmentally friendly technology for the removal of PPCPs from aqueous solutions.Adsorption technology is an appropriate technology to solve this issue.Carbon-based composites,ranging from modified activated carbon to functionalized biochar,show great potential for this purpose.This review hence elaborates on the environmental occurrences and risks of PPCPs and summarizes the recent progress in removing PPCPs from water using carbon-based adsorbents.The pore structure,relatively large specific surface area(SSA),abundant surface functional groups,highly aromatic structures and the extra excellent characteristics of the cooperative materials contribute to their outstanding adsorption performance.Furthermore,the biochar-clay material is cost effective and more efficient compared to traditional activated carbon regarding the adsorption of PPCPs.Among the emerging adsorbents,graphene and carbon nanotubes composites show superior adsorption ability.Their adsorption mechanisms,such as electrostatic interactions,hydrogen bonding,and pore filling,are discussed in details. 展开更多
关键词 ADSORPTION carbon-based composites PPCPS ADSORBENT Water treatment
原文传递
Advancements and Challenges in Organic–Inorganic Composite Solid Electrolytes for All‑Solid‑State Lithium Batteries
7
作者 Xueyan Zhang Shichao Cheng +4 位作者 Chuankai Fu Geping Yin Liguang Wang Yongmin Wu Hua Huo 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期46-97,共52页
To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified ... To address the limitations of contemporary lithium-ion batteries,particularly their low energy density and safety concerns,all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative.Among the various SEs,organic–inorganic composite solid electrolytes(OICSEs)that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications.However,OICSEs still face many challenges in practical applications,such as low ionic conductivity and poor interfacial stability,which severely limit their applications.This review provides a comprehensive overview of recent research advancements in OICSEs.Specifically,the influence of inorganic fillers on the main functional parameters of OICSEs,including ionic conductivity,Li+transfer number,mechanical strength,electrochemical stability,electronic conductivity,and thermal stability are systematically discussed.The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective.Besides,the classic inorganic filler types,including both inert and active fillers,are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs.Finally,the advanced characterization techniques relevant to OICSEs are summarized,and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs. 展开更多
关键词 composite solid electrolytes Inorganic filler Interfacial stability Li-ion conduction mechanism Characterization techniques
下载PDF
Moment Redistribution Effect of the Continuous Glass Fiber Reinforced Polymer-Concrete Composite Slabs Based on Static Loading Experiment
8
作者 Zhao-Jun Zhang Wen-Wei Wang +4 位作者 Jing-Shui Zhen Bo-Cheng Li De-Cheng Cai Yang-Yang Du Hui Huang 《Structural Durability & Health Monitoring》 EI 2025年第1期105-123,共19页
This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment z... This study aimed to investigate the moment redistribution in continuous glass fiber reinforced polymer(GFRP)-concrete composite slabs caused by concrete cracking and steel bar yielding in the negative bending moment zone.An experimental bending moment redistribution test was conducted on continuous GFRP-concrete composite slabs,and a calculation method based on the conjugate beam method was proposed.The composite slabs were formed by combining GFRP profiles with a concrete layer and supported on steel beams to create two-span continuous composite slab specimens.Two methods,epoxy resin bonding,and stud connection,were used to connect the composite slabs with the steel beams.The experimental findings showed that the specimen connected with epoxy resin exhibited two moments redistribution phenomena during the loading process:concrete cracking and steel bar yielding at the internal support.In contrast,the composite slab connected with steel beams by studs exhibited only one-moment redistribution phenomenon throughout the loading process.As the concrete at the internal support cracked,the bending moment decreased in the internal support section and increased in the midspan section.When the steel bars yielded,the bending moment further decreased in the internal support section and increased in the mid-span section.Since GFRP profiles do not experience cracking,there was no significant decrease in the bending moment of the mid-span section.All test specimens experienced compressive failure of concrete at the mid-span section.Calculation results showed good agreement between the calculated and experimental values of bending moments in the mid-span section and internal support section.The proposed model can effectively predict the moment redistribution behavior of continuous GFRP-concrete composite slabs. 展开更多
关键词 Moment redistribution GFRP-concrete composite slabs bending moment experimental study analysis model
下载PDF
One dimensional carbon-based composites as cathodes for lithium-sulfur battery 被引量:1
9
作者 Jin Luo Keke Guan +3 位作者 Wen Lei Shaowei Zhang Quanli Jia Haijun Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第27期101-120,共20页
Lithium-sulfur batteries(LSBs),owing to their much higher energy density compared to the traditional lithium-ion battery,are deemed as one of the most promising candidates for the energy storage system.However,several... Lithium-sulfur batteries(LSBs),owing to their much higher energy density compared to the traditional lithium-ion battery,are deemed as one of the most promising candidates for the energy storage system.However,several issues including shuttle effect,lithium dendrites,and volumetric expansion seriously impede the commercial applications of LSBs.One-dimensional carbon materials(1DCMs)have been widely used as the matrix material for LSBs due to their high surface area,superior conductivity,good flexibility,excellent mechanical stability,and functional modifiability.In this review,the recent progress in 1D carbon-based composites as cathode including metal compounds/1DCMs,MOFs/1DCMs,MXenes/1DCMs,and polymers/1DCMs were discussed.Different strategies for polysulfide confinement and analysis of the functions of various components in the composites were summarized detailly.In the end,the current challenges of LSBs were systematically summarized,and the future outlooks were proposed,aiming at providing a comprehensive insight into the design of new host materials for nextgeneration LSBs. 展开更多
关键词 One-dimensional carbon materials compositeS Lithium-sulfur batteries CATHODE Suttle effect
原文传递
Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers:A Review 被引量:12
10
作者 Honghong Zhao Fengyuan Wang +3 位作者 Liru Cui Xianzhu Xu Xijiang Han Yunchen Du 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期383-415,共33页
Magnetic carbon-based composites are the most attractive candidates for electromagnetic(EM)absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magne... Magnetic carbon-based composites are the most attractive candidates for electromagnetic(EM)absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magnetic branches.Metal-organic frameworks(MOFs)have demonstrated their great potential as sacrificing precursors of magnetic metals/carbon composites,because they provide a good platform to achieve high dispersion of magnetic nanoparticles in carbon matrix.Nevertheless,the chemical composition and microstructure of these composites are always highly dependent on their precursors and cannot promise an optimal EM state favorable for EM absorption,which more or less discount the superiority of MOFs-derived strategy.It is hence of great importance to develop some accompanied methods that can regulate EM properties of MOFs-derived magnetic carbon-based composites e ectively.This review comprehensively introduces recent advancements on EM absorption enhancement in MOFs-derived magnetic carbon-based composites and some available strategies therein.In addition,some challenges and prospects are also proposed to indicate the pending issues on performance breakthrough and mechanism exploration in the related field. 展开更多
关键词 Magnetic carbon-based composites Metal–organic frameworks composition optimization Microstructure design EM absorption enhancement
下载PDF
Ti_(3)C_(2)T_(x) MXene/carbon composites for advanced supercapacitors:Synthesis,progress,and perspectives 被引量:2
11
作者 Yanqing Cai Xinggang Chen +4 位作者 Ying Xu Yalin Zhang Huijun Liu Hongjuan Zhang Jing Tang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期113-142,共30页
MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivi... MXenes are a family of two-dimensional(2D)layered transition metal carbides/nitrides that show promising potential for energy storage applications due to their high-specific surface areas,excellent electron conductivity,good hydrophilicity,and tunable terminations.Among various types of MXenes,Ti_(3)C_(2)T_(x) is the most widely studied for use in capacitive energy storage applications,especially in supercapacitors(SCs).However,the stacking and oxidation of MXene sheets inevitably lead to a significant loss of electrochemically active sites.To overcome such challenges,carbon materials are frequently incorporated into MXenes to enhance their electrochemical properties.This review introduces the common strategies used for synthesizing Ti_(3)C_(2)T_(x),followed by a comprehensive overview of recent developments in Ti_(3)C_(2)T_(x)/carbon composites as electrode materials for SCs.Ti_(3)C_(2)T_(x)/carbon composites are categorized based on the dimensions of carbons,including 0D carbon dots,1D carbon nanotubes and fibers,2D graphene,and 3D carbon materials(activated carbon,polymer-derived carbon,etc.).Finally,this review also provides a perspective on developing novel MXenes/carbon composites as electrodes for application in SCs. 展开更多
关键词 electrochemical performance MXene/carbon composites SUPERCAPACITORS
下载PDF
Laser‑Induced and MOF‑Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature 被引量:2
12
作者 Hyeongtae Lim Hyeokjin Kwon +2 位作者 Hongki Kang Jae Eun Jang Hyuk‑Jun Kwon 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期210-220,共11页
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing... Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices. 展开更多
关键词 Metal-organic frameworks Metal oxide Carbon composite LASER Gas sensor
下载PDF
Impact resistance performance and optimization of the sand-EPE composite cushion in rock sheds 被引量:2
13
作者 YU Bingxin ZHOU Xiaojun +2 位作者 TANG Jianhui ZHANG Yujin ZHANG Yuefeng 《Journal of Mountain Science》 SCIE CSCD 2024年第2期676-689,共14页
Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion wa... Rock sheds are widely used to prevent rockfall disasters along roads in mountainous areas.To improve the capacity of rock sheds for resisting rockfall impact,a sand and expandable polyethylene(EPE)composite cushion was proposed.A series of model experiments of rockfall impact on rock sheds were conducted,and the buried depth of the EPE foam board in the sand layer was considered.The impact load and dynamic response of the rock shed were investigated.The results show that the maximum impact load and dynamic response of the rock shed roof are all significantly less than those of the sand cushion.Moreover,as the distance between the EPE foam board and rock shed roof decreases,the maximum rockfall impact force and impact pressure gradually decrease,and the maximum displacement,acceleration and strain of the rock shed first decrease and then change little.In addition,the vibration acceleration and vertical displacement of the rock shed roof decrease from the centre to the edge and decrease faster along the longitudinal direction than that along the transverse direction.In conclusion,the buffering effect of the sand-EPE composite cushion is better than that of the pure sand cushion,and the EPE foam board at a depth of 1/3 the thickness of the sand layer is appropriate. 展开更多
关键词 ROCKFALL Rock shed Impact composite cushion Buffering effect Dynamic response
下载PDF
12.6μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries 被引量:2
14
作者 Zheng Zhang Jingren Gou +4 位作者 Kaixuan Cui Xin Zhang Yujian Yao Suqing Wang Haihui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期397-409,共13页
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ... Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs. 展开更多
关键词 Solid-state lithium metal batteries composite solid-state electrolyte Ultrathin asymmetric structure Pouch cells
下载PDF
Strength and elastic modulus enhancement in Mg-Li-Al matrix composites reinforced by ex situ TiB2 particles via stir casting 被引量:1
15
作者 Jiawei Sun Dehua Ding +4 位作者 Wencai Liu Guohua Wu Hongjie Liu Guangling Wei Hezhou Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3574-3588,共15页
A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasib... A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasible to prepare this material under stir casting conditions with good dispersion.The microstructure and mechanical properties of the composites prepared by different pretreatment methods were analyzed in detail.The TiB_(2) particles in the Al-TiB_(2)/LA103 composite using the pretreatment process were uniformly distributed in the microstructure due to the formation of highly wettable core-shell units in the melt.Compared with the matrix alloys,the Al-TiB_(2)/LA103 composite exhibited effective strength and elastic modulus improvements while maintaining acceptable elongation.The strengthening effect in the composites was mainly attributed to the strong grain refining effect of TiB2.This work shows a balance of high specific modulus(36.1 GPa·cm^(3)·g^(-1))and elongation(8.4%)with the conventional stir casting path,which is of considerable application value. 展开更多
关键词 Mg-Li composite Stir casting Elastic modulus Microstructure Mechanical properties
下载PDF
Mechanical behaviors of backfill-rock composites: Physical shear test and back-analysis 被引量:1
16
作者 Jie Xin Quan Jiang +5 位作者 Fengqiang Gong Lang Liu Chang Liu Qiang Liu Yao Yang Pengfei Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期807-827,共21页
The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backf... The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence.For exposing the shear failure mechanism of backfill-rock composites,we conducted shear tests on backfill-rock composites under three constant normal loads,compared with the unfilled rock.To investigate the macro-and meso-failure characteristics of the samples in the shear tests,the cracking behavior of samples was recorded by a high-speed camera and acoustic emission monitoring.In parallel with the experimental test,the numerical models of backfill-rock composites and unfilled rock were established using the discrete element method to analyze the continuous-discontinuous shearing process.Based on the damage mechanics and statistics,a novel shear constitutive model was proposed to describe mechanical behavior.The results show that backfill-rock composites had a special bimodal phenomenon of shearing load-deformation curve,i.e.the first shearing peak corresponded to rock break and the second shearing peak induced by the broken of aeolian sand-cement/fly ash paste backfill.Moreover,the shearing characteristic curves of the backfill-rock composites could be roughly divided into four stages,i.e.the shear failure of the specimens experienced:stage I:stress concentration;stage II:crack propagation;stage III:crack coalescence;stage IV:shearing friction.The numerical simulation shows that the existence of aeolian sand-cement/fly ash paste backfill inevitably altered the coalescence type and failure mode of the specimens and had a strengthening effect on the shear strength of backfillrock composites.Based on damage mechanics and statistics,a shear constitutive model was proposed to describe the shear fracture characteristics of specimens,especially the bimodal phenomenon.Finally,the micro-and meso-mechanisms of shear failure were discussed by combining the micro-test and numerical results.The research can advance the better understanding of the shear behavior of backfill-rock composites and contribute to the safety of mining engineering. 展开更多
关键词 Physical simulation Backfill-rock composites Shear failure CRACKING Shear constitutive model
下载PDF
Ultraviolet‑Irradiated All‑Organic Nanocomposites with Polymer Dots for High‑Temperature Capacitive Energy Storage 被引量:1
17
作者 Jiale Ding Yao Zhou +5 位作者 Wenhan Xu Fan Yang Danying Zhao Yunhe Zhang Zhenhua Jiang Qing Wang 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期398-406,共9页
Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have bee... Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites. 展开更多
关键词 High-temperature energy storage Polymer dots Ultraviolet irradiation All-organic composite dielectrics
下载PDF
Snap-through behaviors and nonlinear vibrations of a bistable composite laminated cantilever shell:an experimental and numerical study 被引量:2
18
作者 Lele REN Wei ZHANG +1 位作者 Ting DONG Yufei ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期779-794,共16页
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.... The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell. 展开更多
关键词 bistable composite laminated cantilever shell snap-through behavior nonlinear vibration nonlinear stiffness characteristic chaos and bifurcation
下载PDF
Transient response of doubly-curved bio-inspired composite shells resting on viscoelastic foundation subject to blast load using improved first-order shear theory and isogeometric approach 被引量:1
19
作者 Thuy Tran Thi Thu Tu Nguyen Anh +1 位作者 Hue Nguyen Thi Hong Nguyen Thi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期171-193,共23页
Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties... Investigating natural-inspired applications is a perennially appealing subject for scientists. The current increase in the speed of natural-origin structure growth may be linked to their superior mechanical properties and environmental resilience. Biological composite structures with helicoidal schemes and designs have remarkable capacities to absorb impact energy and withstand damage. However, there is a dearth of extensive study on the influence of fiber redirection and reorientation inside the matrix of a helicoid structure on its mechanical performance and reactivity. The present study aimed to explore the static and transient responses of a bio-inspired helicoid laminated composite(B-iHLC) shell under the influence of an explosive load using an isomorphic method. The structural integrity of the shell is maintained by a viscoelastic basis known as the Pasternak foundation, which encompasses two coefficients of stiffness and one coefficient of damping. The equilibrium equations governing shell dynamics are obtained by using Hamilton's principle and including the modified first-order shear theory,therefore obviating the need to employ a shear correction factor. The paper's model and approach are validated by doing numerical comparisons with respected publications. The findings of this study may be used in the construction of military and civilian infrastructure in situations when the structure is subjected to severe stresses that might potentially result in catastrophic collapse. The findings of this paper serve as the foundation for several other issues, including geometric optimization and the dynamic response of similar mechanical structures. 展开更多
关键词 Blast load Modified first-order shear theory Biological composite structures
下载PDF
Self‑Assembly of Binderless MXene Aerogel for Multiple‑Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding 被引量:1
20
作者 Chuanbiao Zhu Yurong Hao +8 位作者 Hao Wu Mengni Chen Bingqing Quan Shuang Liu Xinpeng Hu Shilong Liu Qinghong Ji Xiang Lu Jinping Qu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期367-382,共16页
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here... The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs. 展开更多
关键词 Self-assembly Multiple-scenario Phase change composites Thermal energy storage Electromagnetic interference shielding
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部