期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
Recent Advances in Fibrous Materials for Hydroelectricity Generation
1
作者 Can Ge Duo Xu +10 位作者 Xiao Feng Xing Yang Zheheng Song Yuhang Song Jingyu Chen Yingcun Liu Chong Gao Yong Du Zhe Sun Weilin Xu Jian Fang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期109-133,共25页
Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gas... Depleting fossil energy sources and conventional polluting power generation pose a threat to sustainable development.Hydroelectricity generation from ubiquitous and spontaneous phase transitions between liquid and gaseous water has been considered a promising strategy for mitigating the energy crisis.Fibrous materials with unique flexibility,processability,multifunctionality,and practicability have been widely applied for fibrous materials-based hydroelectricity generation(FHG).In this review,the power generation mechanisms,design principles,and electricity enhancement factors of FHG are first introduced.Then,the fabrication strategies and characteristics of varied constructions including 1D fiber,1D yarn,2D fabric,2D membrane,3D fibrous framework,and 3D fibrous gel are demonstrated.Afterward,the advanced functions of FHG during water harvesting,proton dissociation,ion separation,and charge accumulation processes are analyzed in detail.Moreover,the potential applications including power supply,energy storage,electrical sensor,and information expression are also discussed.Finally,some existing challenges are considered and prospects for future development are sincerely proposed. 展开更多
关键词 HYDROELECTRICITY fibrous material Streaming potential Ion diffusion
下载PDF
A Greener Future: Carbon Nanomaterials from Lignocellulose
2
作者 Hebat-Allah S.Tohamy Mohamed El-Sakhawy Samir Kamel 《Journal of Renewable Materials》 2025年第1期21-47,共27页
Lignocellulosic materials(LCMs),abundant biomass residues,pose significant environmental challenges when improperly disposed of.LCMs,such as sugarcane bagasse,rice straw,saw dust and agricultural residues,are abun-dant... Lignocellulosic materials(LCMs),abundant biomass residues,pose significant environmental challenges when improperly disposed of.LCMs,such as sugarcane bagasse,rice straw,saw dust and agricultural residues,are abun-dant but often burned,contributing to air pollution and greenhouse gas emissions.This review explores the potential of transforming these materials into high-value carbon nanomaterials(CNMs).We explore the potential of transforming these materials into high-value CNMs.By employing techniques like carbonization and activa-tion,LCMs can be converted into various CNMs,including carbon nanotubes(CNTs),graphene(G),graphene oxide(GO),carbon quantum dots(CQDs),nanodiamonds(NDs),fullerenes(F),carbon nanofibers(CNFs),and others.Hybridizing different carbon allotropes further enhances their properties.CNMs derived from cellulose,lignin,and hemicellulose exhibit promising applications in diversefields.For instance,CNTs can be used in energy storage devices like batteries and supercapacitors due to their exceptional electrical conductivity and mechanical strength.Additionally,CNTs can be incorporated into recycled paper as afire retardant additive,enhancing itsflame resistance.G,renowned for its high surface area and excellent electrical conductivity,finds applications in electronics,sensors,catalysis,and water treatment,where it can be used to adsorb heavy metal ions.CQDs,owing to their unique optical properties,are used in bioimaging,drug delivery,and optoelectronic devices.By harnessing the potential of LCMs,we can not only mitigate environmental concerns but also contri-bute to a sustainable future.Continued research is essential to optimize synthesis methods,explore novel applica-tions,and unlock the full potential of these versatile materials. 展开更多
关键词 Lignocellulosic materials carbon-based nanomaterials carbon allotropes
下载PDF
Photo-rechargeable batteries and supercapacitors:Critical roles of carbon-based functional materials 被引量:1
3
作者 Liqun Wang Lei Wen +5 位作者 Yueyu Tong Sihui Wang Xinggang Hou Xiaodong An Shi Xue Dou Ji Liang 《Carbon Energy》 CAS 2021年第2期225-252,共28页
As a clean and renewable energy source,solar energy is a competitive alternative to replace conventional fossil fuels.Nevertheless,its serious fluctuating nature usually leads to a poor alignment with the actual energ... As a clean and renewable energy source,solar energy is a competitive alternative to replace conventional fossil fuels.Nevertheless,its serious fluctuating nature usually leads to a poor alignment with the actual energy demand.To solve this problem,the direct solar-to-electrochemical energy conversion and storage have been regarded as a feasible strategy.In this context,the development of high-performance integrated devices based on solar energy conversion parts(i.e.,solar cells or photoelectrodes)and electrochemical energy storage units(i.e.,rechargeable batteries or supercapacitors[SCs])has become increasingly necessary and urgent,in which carbon and carbon-based functional materials play a fundamental role in determining their energy conversion/storage performances.Herein,we summarize the latest progress on these integrated devices for solar electricity energy conversion and storage,with special emphasis on the critical role of carbon-based functional materials.First,principles of integrated devices are introduced,especially roles of carbon-based materials in these hybrid energy devices.Then,two major types of important integrated devices,including photovoltaic and photoelectrochemicalrechargeable batteries or SCs,are discussed in detail.Finally,key challenges and opportunities in the future development are also discussed.By this review,we hope to pave an avenue toward the development of stable and efficient devices for solar energy conversion and storage. 展开更多
关键词 carbon-based materials electrochemical energy storage integrated devices photoelectric conversion solar energy
下载PDF
Specializing liquid electrolytes and carbon-based materials in EDLCs for low-temperature applications
4
作者 Pui-yan Hung Huihui Zhang +3 位作者 Han Lin Qiaoshi Guo Kin-tak Lau Baohua Jia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期580-602,共23页
Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifet... Electric double-layer capacitors(EDLCs) are emerging technologies to meet the ever-increasing demand for sustainable energy storage devices and systems in the 21 st Century owing to their advantages such as long lifetime, fast charging speed and environmentally-friendly nature, which play a critical part in satisfying the demand of electronic devices and systems. Although it is generally accepted that EDLCs are suitable for working at low temperatures down to-40℃, there is a lack of comprehensive review to summarize the quantified performance of EDLCs when they are subjected to low-temperature environments. The rapid and growing demand for high-performance EDLCs for auxiliary power systems in the aeronautic and aerospace industries has triggered the urge to extend their operating temperature range,especially at temperatures below-40℃. This article presents an overview of EDLC’s performance and their challenges at extremely low temperatures including the capability of storing a considerable amount of electrical energy and maintaining long-term stability. The selection of electrolytes and electrode materials is crucial to the performance of EDLCs operating at a desired low-temperature range. Strategies to improve EDLC’s performance at extremely low temperatures are discussed, followed by the future perspectives to motivate more future studies to be conducted in this area. 展开更多
关键词 Electric double-layer capacitors(EDLCs) Liquid electrolytes carbon-based materials Low-temperature applications
下载PDF
Enhancing the cycling stability of Na-ion batteries by bonding MoS2 on assembled carbon-based materials
5
作者 Pin Song Jun Di +14 位作者 Lixing Kang Manzhang Xu Bijun Tang Jun Xiong Jiewu Cui Qingsheng Zeng Jiadong Zhou Yongmin He Qundong Fu Juan Peng Shasha Guo Bo Lin Jingyu Zhang Peng Meng Zheng Liu 《Nano Materials Science》 CAS 2019年第4期310-317,共8页
Room temperature Na-ion batteries(SIBs) show great potential for use as renewable energy storage systems.However, the large-scale application of SIBs has been hindered by the lack of an ideal SIBs anode material. We s... Room temperature Na-ion batteries(SIBs) show great potential for use as renewable energy storage systems.However, the large-scale application of SIBs has been hindered by the lack of an ideal SIBs anode material. We synthesized MoS2 on carbonized graphene-chitosan(G-C) using the hydrothermal method. The strong interaction between the MoS2 and the G-C greatly improved the electron transport rate and maintained the structural stability of the electrode, which lead to both an excellent rate capability and long cycle stability. The G-C monolith was proven to enhance the electrical conductivity of the composites and served as a matrix for uniformly dispersing active MoS2 nanosheets(NSs), as well as being a buffer material to adapt to changes in volume during the cycle.Serving as an anode material for SIBs, the MoS2-G-C electrode showed good cycling stability(527.3mAh g-1 at100 m A g-1 after 200 cycles), excellent rate capability, and a long cycle life(439.1 m Ah g-1 at 1 A g-1 after 200 cycles). 展开更多
关键词 Na-ion batteries carbon-based materials MOS2 Long cycle life
下载PDF
A New Type of Multielements-Doped,Carbon-based Materials Characterized by High-thermoconductiv-ity,Low Chemical Sputtering,Low RES Yield and Exposure to Plasma
6
作者 许增裕 刘翔 +4 位作者 谌继明 王明旭 宋进仁 翟更太 李承新 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第3期1311-1317,共7页
Low-Z materials, such as carbon-based materials and Be, are major plasma-facing material (PFM) for current, even in future fusion devices. In this paper, a new type of multielement-doped carbon-based materials develop... Low-Z materials, such as carbon-based materials and Be, are major plasma-facing material (PFM) for current, even in future fusion devices. In this paper, a new type of multielement-doped carbon-based materials developed are presented along with experimental re-sults of their properties. The results indicate a decrease in chemical sputtering yield by one order of magnitude, a decrease in both thermal shock resistance and radiation-enhanced sublimation, an evidently lower temperature desorption spectrum, and combined properties of exposing to plasma. 展开更多
关键词 than GBS RES A New Type of Multielements-Doped carbon-based materials Characterized by High-thermoconductiv-ity Low Chemical Sputtering Low RES Yield and Exposure to Plasma
下载PDF
The use of carbon-based particle electrodes in three-dimensional electrode reactors for wastewater treatment
7
作者 LU Hua-yu LIU Wei-feng +1 位作者 QIN Lei LIU Xu-guang 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第5期973-991,共19页
The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research... The use of three-dimensional(3D)electrodes in water treatment is competitive because of their high catalytic efficiency,low energy consumption and promising development.The use of particle electrodes is a key research focus in this technology.They are usually in the form of particles that fill the space between the cathode and anode,and the selection of materials used is important.Carbon-based materials are widely used because of their large specific surface area,good adsorption performance,high chemical stability and low cost.The principles of 3D electrode technology are introduced and recent research on its use for degrading organic pollutants using carbon-based particle electrodes is summarized.The classification of particle electrodes is introduced and the challenges for the future development of carbon-based particle electrodes in wastewater treatment are discussed. 展开更多
关键词 Environmental pollution Three-dimensional electrode technology carbon-based materials carbon-based particle electrode
下载PDF
TiO2-PES Fibrous Composite Material for Ammonia Removal Using UV-A Photocatalyst
8
作者 Anh Phuong Le Thi Masaru Ohshiro Takaomi Kobayashi 《Journal of Materials Science and Chemical Engineering》 2024年第1期1-19,共19页
This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting co... This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under  UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications. 展开更多
关键词 Ammonia Removal PHOTOCATALYST TiO2-PES Composite Fiber fibrous material
下载PDF
An Empirical Formula for Sound Absorption of Fibrous Materials
9
作者 张新安 《Journal of Donghua University(English Edition)》 EI CAS 2008年第3期349-354,共6页
The sound absorption coefficient(SAC)curves of the nonwovens,fabrics,and thick fibrous layers with the frequency in the range of 125-3 200 Hz and cavity distances of 5 cm,10 cm,20 cm,30 cm and 40 cm were measured.Base... The sound absorption coefficient(SAC)curves of the nonwovens,fabrics,and thick fibrous layers with the frequency in the range of 125-3 200 Hz and cavity distances of 5 cm,10 cm,20 cm,30 cm and 40 cm were measured.Based on analysis,it is found that the SAC is actually in direct proportion to the relative vibration amplitude of the sound wave,resulting in obtaining a mathematical expression showing that the SAC changes with the frequency for a given material.Additionally,a good corresponding relation between the maximal SAC and the permeability of the materials is discovered,thus an empirical formula is established.As a result,a complete SAC formula has been developed.In this formula,the SAC is solely a function of the sound wave frequency and permeability of the material.In comparison with sound absorption spectra of several materials,the calculated results and results measured with the formula coincide well with each other. 展开更多
关键词 fibrous material SAC formula
下载PDF
A review of carbon-based hybrid materials for supercapacitors
10
作者 Theodore Azemtsop Manfo Hannu Laaksonen 《新型炭材料(中英文)》 2025年第1期81-110,共30页
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti... Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors. 展开更多
关键词 carbon-based hybrid material Structure design Electrode material Specific capacitance Supercapacitors
下载PDF
High specific surface area porous graphene grids carbon as anode materials for sodium ion batteries 被引量:3
11
作者 Hao Zhang Huinan Guo +6 位作者 Aiyang Li Xiaoya Chang Song Liu Dun Liu Yijing Wang Fang Zhang Huatang Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第4期159-166,共8页
Although great accomplishments of functional material synthesis have been achieved in sodium ion batteries(SIBs)recently,there are still numerous challenges and problems in preparing carbon-based materials with porous... Although great accomplishments of functional material synthesis have been achieved in sodium ion batteries(SIBs)recently,there are still numerous challenges and problems in preparing carbon-based materials with porous architectures and enough lattice distance for Na^+insertion.Herein we report a templated strategy to synthesize 3D porous graphene girds(PGGs)consisting of several stacking graphene structure with ultrahigh surface area and hierarchical connected structure by employing Ag nanoparticles(NPs).The Ag NPs will regenerate for decreasing the experimental cost,also in line with principles of green chemistry and environmentally friendly strategy.The PGGs obtain advanced specific capacity of160 m A h g^(-1)at current density of 50 m A h g^(-1).Moreover,112 mA h g^(-1)capacity can be gained at 1 A h g^(-1)during 1000 cycles.Due to their porous architecture,ultrahigh surface area and low amorphous graphited structure,PGGs electrode showed the excellent electrochemical performance in high rate capability. 展开更多
关键词 carbon-based materials POROUS structure Ultrahigh surface area Ag NANOPARTICLE SODIUM ion BATTERY
下载PDF
Adsorption and Adsorption-Photocatalytic Degradation of VOCs Based on Carbon Materials 被引量:1
12
作者 Li Ying Zhang Hongxing +2 位作者 Tao Bin Zhang Jianzhong Li Jianzhe 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第3期1-11,共11页
Adsorption and the combination of adsorption and photocatalysis are prospective strategies for treating lowconcentrationvolatile organic compounds (VOCs). Behind the adsorption technology of VOC treatments are carbon-... Adsorption and the combination of adsorption and photocatalysis are prospective strategies for treating lowconcentrationvolatile organic compounds (VOCs). Behind the adsorption technology of VOC treatments are carbon-basedmaterials with large surface areas and high VOC uptake. This review summarizes the research progress in carbon-basedadsorbents and adsorbent-photocatalysts for VOC removal. Firstly, the VOC adsorption performances of various carbonmaterials, including activated carbon, activated carbon fiber, biochar, graphene and its derivatives, and carbon nanotubes,are summarized, and the adsorption mechanism of VOCs on carbon materials is analyzed. Then, the VOC adsorptionphotocatalyticproperties of composites comprised of different carbon materials and photocatalysts are presented. Finally,perspectives on the adsorption and adsorption-photocatalysis of VOCs via carbon materials are proposed. This reviewprovides an optimal reference for the research and development of adsorbents and adsorption-photocatalysts of VOCs. 展开更多
关键词 volatile organic compounds carbon-based materials ADSORPTION adsorption-photocatalysis
下载PDF
Recent Advances in Carbon-Based Current Col lectors/Hosts for Alkali Metal Anodes
13
作者 Guanyao Wang Chan Song +1 位作者 Jiaqi Huang Ho Seok Park 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期112-141,共30页
The urgent demand for high-energy-density storage systems evokes the research upsurge on the alkali metal batteries with high theoretical capacities.However,the utilization of alkali metal anodes,including Li,Na,and K... The urgent demand for high-energy-density storage systems evokes the research upsurge on the alkali metal batteries with high theoretical capacities.However,the utilization of alkali metal anodes,including Li,Na,and K,is significantly hindered by notorious dendrite growth,undesirable corrosion,and unstable solid electrolyte interface.In order to resolve these issues,the carbon materials for the rational design of current collector/host that can regulate the plating/stripping behavior of alkali metal have been exploited.These carbon-based current collectors/hosts are featured with many pivotal advantages,including mechanical integrity to accommodate the volume change,superior electronic/ionic conductivity,large available surface area,and rich functionalization chemistries to increase the affinity to alkali metal.In this review,the recent progress on various dimensional carbon-based current collectors/hosts with different chemical components in stabilizing the alkali metal anodes through the regulation of initial deposition and subsequent growth behavior during plating/stripping process is provided.The nanostructured carbon scaffolds with self-affinity to alkali metals,as well as the carbon frameworks with internal/external affinitive sites to alkali metals,catalogued by various dimensions,are discussed in this review.Therefore,these appealing strategies based on the carbon-based current collectors/hosts can provide a paradigm for the realization of high-energy-density alkali metal batteries. 展开更多
关键词 carbon-based materials current collectors energy density HOSTS metal anodes
下载PDF
Advances in colored carbon-based fiber materials and their emerging applications
14
作者 Yu Zhang Yuxin Luo +10 位作者 Mengqi Wang Tonghe Xing Annan He Zhiyu Huang Zhicheng Shi Sijie Qiao Aixin Tong Jie Bai Shichao Zhao Fengxiang Chen Weilin Xu 《SusMat》 2024年第6期191-223,共33页
Carbon-based fiber materials are widely used in aerospace,military,and electronics owing to their outstanding comprehensive properties.However,the high degree of crystallization and chemical inertness of their surface... Carbon-based fiber materials are widely used in aerospace,military,and electronics owing to their outstanding comprehensive properties.However,the high degree of crystallization and chemical inertness of their surfaces impede the coloring of such materials by traditional dyeing methods,thereby limiting their application in a broader field.Exploring advanced micro/nano-processing technology for colored carbon-based fiber materials has become a growing interdisciplinary research area in recent years.Therefore,this review comprehensively discusses the structure‒color‒function relationships of carbon-based fiber materials.The structure of carbon-based fiber materials and their properties responsible for challenges in coloring by traditional dyeing methods are discussed.Moreover,the color-generating mechanisms underlying the display of structural colors by living organisms due to fundamental optical phenomena,including thin/multilayer-film interference,diffraction grating,scattering,and photonic crystals,are described.Furthermore,recent progress in bio-inspirated colored carbon-based fiber materials prepared via advanced micro/nanoscale manufacturing strategies is reviewed.In addition,emerging applications of colored carbon-based fiber materials in various fields are presented.Finally,the possible challenges and future directions for the design,large-scale production,and application of colored carbon-based fibermaterials and their composites are discussed,aiming to promote the material design of innovative next-generation systems and research in the advanced material and related engineering fields. 展开更多
关键词 bio-inspire structural color colored carbon-based fiber materials emerging applications micro/nanoscale manufacturing strategies
原文传递
Carbon-based materials for photodynamic therapy: A mini-review 被引量:5
15
作者 Di Lu Ran Tao Zheng Wang 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2019年第2期310-323,共14页
Carbon-based materials have been extensively applied in photodynamic therapy owing to the unique optical characteristics,good biocompatibility and tunable systematic toxicity.This mini-review mainly focuses on the rec... Carbon-based materials have been extensively applied in photodynamic therapy owing to the unique optical characteristics,good biocompatibility and tunable systematic toxicity.This mini-review mainly focuses on the recent application of carbon-based materials including graphene,carbon nanotube,fullerene,corannulene,carbon dot and mesoporous carbon nanoparticle.The carbon-based materials can perform not only as photosensitizers,but also effective carriers for photosensitizers in photodynamic therapy,and its combined treatment. 展开更多
关键词 photodynamic therapy carbon-based materials graphene CARBON NANOTUBE FULLERENE CORANNULENE CARBON dot MESOPOROUS CARBON nanoparticle
原文传递
Porous 3D carbon-based materials:An emerging platform for efficient hydrogen production 被引量:4
16
作者 Fangyi Li Jizhou Jiang +6 位作者 Jiamei Wang Jing Zou Wei Sun Haitao Wang Kun Xiang Pingxiu Wu Jyh-Ping Hsu 《Nano Research》 SCIE EI CSCD 2023年第1期127-145,共19页
Due to their unique properties and uninterrupted breakthrough in a myriad of clean energy-related applications,carbon-based materials have received great interest.However,the low selectivity and poor conductivity are ... Due to their unique properties and uninterrupted breakthrough in a myriad of clean energy-related applications,carbon-based materials have received great interest.However,the low selectivity and poor conductivity are two primary difficulties of traditional carbon-based materials(zero-dimensional(0D)/one-dimensional(1D)/two-dimensional(2D)),enerating inefficient hydrogen production and impeding the future commercialization of carbon-based materials.To improve hydrogen production,attempts are made to enlarge the surface area of porous three-dimensional(3D)carbon-based materials,achieve uniform interconnected porous channels,and enhance their stability,especially under extreme conditions.In this review,the structural advantages and performance improvements of porous carbon nanotubes(CNTs),g-C_(3)N_(4),covalent organic frameworks(COFs),metal-organic frameworks(MOFs),MXenes,and biomass-derived carbon-based materials are firstly summarized,followed by discussing the mechanisms involved and assessing the performance of the main hydrogen production methods.These include,for example,photo/electrocatalytic hydrogen production,release from methanolysis of sodium borohydride,methane decomposition,and pyrolysis-gasification.The role that the active sites of porous carbon-based materials play in promoting charge transport,and enhancing electrical conductivity and stability,in a hydrogen production process is discussed.The current challenges and future directions are also discussed to provide guidelines for the development of next-generation high-efficiency hydrogen 3D porous carbon-based materials prospected. 展开更多
关键词 porous three-dimensional(3D)carbon-based materials hydrogen production advanced synthesis
原文传递
Recent progress in carbon-based materials boosting electrochemical water splitting 被引量:3
17
作者 Ziqi Zhang Yin Lei Weimin Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期3623-3631,共9页
As environmental crises such as global warming become more and more serious due to the large amount of carbon dioxide emitted by the burning of fossil fuels,much attention has been paid to carbon neutrality.Hydrogen,w... As environmental crises such as global warming become more and more serious due to the large amount of carbon dioxide emitted by the burning of fossil fuels,much attention has been paid to carbon neutrality.Hydrogen,with zero carbon content,is a clean and renewable energy carrier having a large energy density.It is considered as one of the most desirable alternatives to fossil fuels.Electrochemical water splitting,unlike the steam reforming process accelerating fossil fuels depletion and CO_(2) emissions,can produce H_(2) powered by renewable energy such as solar or wind.As a promising way to promote carbon neutralization,hydrogen production by electrolysis of water is meaningful both in terms of scientific research and practical application.In order to drive electrochemical water splitting with low power consumption,efficient,durable and affordable electrocatalysts with low overpotentials are in urgent need.Therefore,this mini-review briefly introduces the current development status and mainstream obstacles of carbon-based materials used in electrochemical water splitting. 展开更多
关键词 carbon-based materials Water splitting ELECTROCATALYSIS Carbon neutrality Hydrogen evolution reaction Oxygen evolution reaction
原文传递
Recent Progress in Carbon-based Materials of Non-Noble Metal Catalysts for ORR in Acidic Environment 被引量:2
18
作者 Jie Lian Jin-Yu Zhao Xiao-Min Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第7期885-899,共15页
Proton exchange membrane fuel cell(PEMFC)has important implications for the success of clean transportation in the future.One of the key factors affecting the cost and performance of PEMFC is the cathode electrocataly... Proton exchange membrane fuel cell(PEMFC)has important implications for the success of clean transportation in the future.One of the key factors affecting the cost and performance of PEMFC is the cathode electrocatalyst for the oxygen reduction reaction(ORR)to overcome sluggish kinetics and instability in an acidic environment.As an essential component of the electrocatalyst,the support material largely determines the activity,mass transfer,charge transfer,and durability of the electrocatalyst.Thereby,the support material plays a critical role in the overall performance of the electrocatalyst.Carbonbased materials are widely used as electrocatalyst supports because of their high porosity,conductivity,chemical stability,and tunable morphology.Recently,some new carbon-based materials with excellent structure have been introduced,such as carbon nanotubes,carbon nanowires,graphene,metal-organic framework(MOF)-derived carbon,and biomass-derived carbon materials.Combined with a variety of strategies,such as controllable construction of porous structures and surface defects,proper doping heteroatoms,the ingenious design of model electrocatalysts,and predictive theoretical calculation,a new reliable path was provided for further improving the performance of electrocatalysts and exploring the catalytic mechanism.Based on the topic of carbon-based materials for ORR in acidic medium,this review summarizes the up-to-date progress and breakthroughs,highlights the factors affecting the catalytic activity and stability of ORR electrocatalysts in acids,and discusses their future application and development. 展开更多
关键词 carbon-based materials Non-noble metal electrocatalysts Acidic environment Oxygen reduction reaction Proton exchange membrane fuel cell
原文传递
Carbon-based anode materials for potassium-ion batteries:From material,mechanism to performance 被引量:6
19
作者 Jinhui Zhou Shaojun Guo 《SmartMat》 2021年第2期176-201,共26页
Potassium-ion batteries(PIBs)show great potential in the application of large-scale energy storage devices due to the comparable high operating voltage with lithium-ion batteries and lower cost.Carbon-based materials ... Potassium-ion batteries(PIBs)show great potential in the application of large-scale energy storage devices due to the comparable high operating voltage with lithium-ion batteries and lower cost.Carbon-based materials are promising candidates as anodes for PIBs,for their low cost,high abundance,nontoxicity,environmental benignity,and sustainability.In this review,we will first discuss the potassium storage mechanisms of graphitic and defective carbon materials and carbon-based composites with various compositions and microstructures to comprehensively understand the potassium storage behavior.Then,several strategies based on heteroatoms doping,unique nanostructure design,and introduction of the conductive matrix to form composites are proposed to optimize the carbon-based materials and achieve high performance for PIBs.Finally,we conclude the existing challenges and perspectives for further development of carbon-based materials,which is believed to promote the practical application of PIBs in the future. 展开更多
关键词 carbon-based anode materials heteroatoms doping potassium-ion batteries storage mechanism
原文传递
Toward Analytical Homogenized Relaxation Modulus for Fibrous Composite Material with Reduced Order Homogenization Method
20
作者 Huilin Jia Shanqiao Huang Zifeng Yuan 《Computers, Materials & Continua》 SCIE EI 2025年第1期193-222,共30页
In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order hom... In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability. 展开更多
关键词 Homogenized relaxation modulus viscoelastic standard solid model reduced order homogenization fibrous composite material
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部