Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a ...Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a distributed measurement system for in-situ soil moisture content (SM-DTS) is introduced.The system is based on carbon-fiber heated cable (CFHC) technology that has been developed to enhancethe measuring accuracy of in-situ soil moisture content. Using CFHC technique, a temperature characteristicvalue (Tt) can be defined from temperatureetime curves. A relationship among Tt, soil thermalimpedance coefficient and soil moisture content is then established in laboratory. The feasibility of theSM-DTS technology to provide distributed measurements of in-situ soil moisture content is verifiedthrough field tests. The research reported herein indicates that the proposed SM-DTS is capable ofmeasuring in-situ soil moisture content over long distances and large areas.展开更多
This paper presents the temperature dependence of in-plane thermal diffusivity and anisotropy distribution for pitch-based carbon-fiber-reinforced polymers (CFRPs). The measurement was performed using the laser-spot p...This paper presents the temperature dependence of in-plane thermal diffusivity and anisotropy distribution for pitch-based carbon-fiber-reinforced polymers (CFRPs). The measurement was performed using the laser-spot periodic heating method. The samples were unidirectional (UD) and crossply (CP) CFRPs. All carbon fibers of the UD samples ran in one direction, while those of the CP samples ran in two directions. In both UD and CP CFRPs, from -80°C to +80°C, temperature dependence of thermal diffusivity values increased as temperature decreased. In this temperature range, the anisotropic ratio between the fiber direction and its perpendicular direction of the UD CFRP was 106 - 124. During the anisotropy distribution measurement, it was found that thermal anisotropy can be visualized by scanning the laser in a circle on the sample. The thermal diffusivity of the UD CFRP in the fiber direction was 17 times larger than that in the 15°direction, and the thermal diffusivity in the other directions was lower than that in the 15°direction. The anisotropy distribution for the CP CFRP reflected its inhomogeneous structure.展开更多
A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-C...A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical per- formance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precur- sor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively.展开更多
A novel class of ZnCo2O4-urchins-on-carbon-fibers matrix has been designed, characterized, and used to fabricate high-performance energy storage devices. We obtained a reversible lithium storage capacity of 1180 mA'h...A novel class of ZnCo2O4-urchins-on-carbon-fibers matrix has been designed, characterized, and used to fabricate high-performance energy storage devices. We obtained a reversible lithium storage capacity of 1180 mA'h/g even after 100 cycles, demonstrating the highreversible capacity and excellent cycle life of the as-prepared samples. Tested as fast-charging batteries, these electrodes exhibited a considerable capacity of 750 mA'h/g at an exceptionally high rate of 20 C (18 A/g), with an excellent cycle life (as long as 100 cycles), which are the best high-rate results reported at such a high charge^discharge current density for ZnCo2O4-based anode materials in lithium rechargeable batteries. Such attractive properties may be attributed to the unique structure of the binder-free ZnCo2O4-urchins-on-carbon-fibers matrix. Full batteries were also developed by combining the ZnCo2O4 anodes with commercial LiCoO2 cathodes, which showed flexible/wearable and stable features for use as very promising future energy storage units.展开更多
It is a challenge to achieve a sound welded metal/carbon-fiber-reinforced thermoplastic(CFRTP) joint with high strength and few bubbles. In this study, sound lap joints of Cu and CFRTP were obtained by friction lap ...It is a challenge to achieve a sound welded metal/carbon-fiber-reinforced thermoplastic(CFRTP) joint with high strength and few bubbles. In this study, sound lap joints of Cu and CFRTP were obtained by friction lap joining(FLJ) directly at rotation rates of 600-2000 rpm, with the welding tool at the joint center and offsetting the tool 7 mm away from the center toward the retreating side, respectively. Tool offsetting reduced the non-uniform temperature distribution in the lap joints resulting from the high conductivity of Cu, which not only enhanced the tensile shear force from 0.89-2.25 kN to 1.71-3.54 kN,with the maximum increasing rate of 135%, but also reduced the bubble area to only 19% of the original level of 2000 rpm. It is the first time to report a high-quality Cu/CFRTP joint with a high strength and few bubbles. The large increase of the strength after tool offsetting was attributed to the increase of the joining area, the decrease of bubbles and the decrease of the CFRTP degradation. The details on the generation,quantitative distribution and expulsion of the bubbles in the FLJ joints were discussed.展开更多
Oxygen-flee copper (Cu) was successfully joined to carbon-fiber-reinforced thermoplastic (CFRTP, polyamide 6 with 20wt% carbon fiber addition) by friction lap joining (FLJ) at joining speeds of 200-1600 mm/min w...Oxygen-flee copper (Cu) was successfully joined to carbon-fiber-reinforced thermoplastic (CFRTP, polyamide 6 with 20wt% carbon fiber addition) by friction lap joining (FLJ) at joining speeds of 200-1600 mm/min with a constant rotation rate of 1500 rpm and a nominal plunge depth of 0.9 ram. It is the first time to report the joining of CFRTP to Cu by FLJ. As the joining speed increased, the tensile shear force (TSF) of joints increased first, and decreased thereafter. The maximum TSF could reach 2.3 kN ( 15 mm in width). Hydrogen bonding formed between the amide group of CFRTP and the thin Cu20 layer on the Cu surface, which mainly contributed to the joint bonding. The influence factors of the TSF of the joints at different joining speeds were discussed. The TSF was mainly affected by the joining area, the degradation of the plastic matrix and the number and the size of bubbles. As the joining speed increased, the influence factors varied as follows: the joining area increased first and then decreased; the degra- dation of the plastic matrix and the number and the size of bubbles decreased. The maximum TSF was the comprehensive result of the relatively large joining area, small degradation of the plastic matrix and small number and sizes of bubbles.展开更多
Sn/carbon-fibers(CFs) nanocomposite has been prepared by chemical vapor deposition with in-situ catalytic growth of CFs.The nanocomposite has been characterized by X-ray diffraction(XRD),field emission scanning el...Sn/carbon-fibers(CFs) nanocomposite has been prepared by chemical vapor deposition with in-situ catalytic growth of CFs.The nanocomposite has been characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FE-SEM),transmission electron microscopy(TEM) and Raman spectrum.The electrochemical performance of the nanocomposite has been investigated by galvanostatic cycling and cyclic voltammetry(CV).It has been found that a three-dimensional conductive network forms by the interconnected CFs,which offers conductive channels for the Sn nanoparticles.The nanocomposite gives a first charge capacity of 385 mAh.g-1 and exhibits an improved cycling stability than bare Sn.展开更多
基金The financial supports provided by the National Natural Science Foundation of China(Grant Nos.41230636,41372265,41427801)National Basic Research Program of China(973 Project)(Grant No.2011CB710605)
文摘Moisture content is a fundamental physical index that quantifies soil property and is closely associatedwith the hydrological, ecological and engineering behaviors of soil. To measure in-situ soil moisturecontents, a distributed measurement system for in-situ soil moisture content (SM-DTS) is introduced.The system is based on carbon-fiber heated cable (CFHC) technology that has been developed to enhancethe measuring accuracy of in-situ soil moisture content. Using CFHC technique, a temperature characteristicvalue (Tt) can be defined from temperatureetime curves. A relationship among Tt, soil thermalimpedance coefficient and soil moisture content is then established in laboratory. The feasibility of theSM-DTS technology to provide distributed measurements of in-situ soil moisture content is verifiedthrough field tests. The research reported herein indicates that the proposed SM-DTS is capable ofmeasuring in-situ soil moisture content over long distances and large areas.
文摘This paper presents the temperature dependence of in-plane thermal diffusivity and anisotropy distribution for pitch-based carbon-fiber-reinforced polymers (CFRPs). The measurement was performed using the laser-spot periodic heating method. The samples were unidirectional (UD) and crossply (CP) CFRPs. All carbon fibers of the UD samples ran in one direction, while those of the CP samples ran in two directions. In both UD and CP CFRPs, from -80°C to +80°C, temperature dependence of thermal diffusivity values increased as temperature decreased. In this temperature range, the anisotropic ratio between the fiber direction and its perpendicular direction of the UD CFRP was 106 - 124. During the anisotropy distribution measurement, it was found that thermal anisotropy can be visualized by scanning the laser in a circle on the sample. The thermal diffusivity of the UD CFRP in the fiber direction was 17 times larger than that in the 15°direction, and the thermal diffusivity in the other directions was lower than that in the 15°direction. The anisotropy distribution for the CP CFRP reflected its inhomogeneous structure.
基金supported by the Zijin Program of Zhejiang Universitythe Fundamental Research Funds for the Central Universities (No.2010QNA4003)+1 种基金the Ph.D. Program Foundation of the Ministry of Education of China (No.20100101120024)the Foundation of Education Office of Zhejiang Province, China (No.Y201016484)
文摘A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical per- formance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precur- sor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively.
文摘A novel class of ZnCo2O4-urchins-on-carbon-fibers matrix has been designed, characterized, and used to fabricate high-performance energy storage devices. We obtained a reversible lithium storage capacity of 1180 mA'h/g even after 100 cycles, demonstrating the highreversible capacity and excellent cycle life of the as-prepared samples. Tested as fast-charging batteries, these electrodes exhibited a considerable capacity of 750 mA'h/g at an exceptionally high rate of 20 C (18 A/g), with an excellent cycle life (as long as 100 cycles), which are the best high-rate results reported at such a high charge^discharge current density for ZnCo2O4-based anode materials in lithium rechargeable batteries. Such attractive properties may be attributed to the unique structure of the binder-free ZnCo2O4-urchins-on-carbon-fibers matrix. Full batteries were also developed by combining the ZnCo2O4 anodes with commercial LiCoO2 cathodes, which showed flexible/wearable and stable features for use as very promising future energy storage units.
文摘It is a challenge to achieve a sound welded metal/carbon-fiber-reinforced thermoplastic(CFRTP) joint with high strength and few bubbles. In this study, sound lap joints of Cu and CFRTP were obtained by friction lap joining(FLJ) directly at rotation rates of 600-2000 rpm, with the welding tool at the joint center and offsetting the tool 7 mm away from the center toward the retreating side, respectively. Tool offsetting reduced the non-uniform temperature distribution in the lap joints resulting from the high conductivity of Cu, which not only enhanced the tensile shear force from 0.89-2.25 kN to 1.71-3.54 kN,with the maximum increasing rate of 135%, but also reduced the bubble area to only 19% of the original level of 2000 rpm. It is the first time to report a high-quality Cu/CFRTP joint with a high strength and few bubbles. The large increase of the strength after tool offsetting was attributed to the increase of the joining area, the decrease of bubbles and the decrease of the CFRTP degradation. The details on the generation,quantitative distribution and expulsion of the bubbles in the FLJ joints were discussed.
文摘Oxygen-flee copper (Cu) was successfully joined to carbon-fiber-reinforced thermoplastic (CFRTP, polyamide 6 with 20wt% carbon fiber addition) by friction lap joining (FLJ) at joining speeds of 200-1600 mm/min with a constant rotation rate of 1500 rpm and a nominal plunge depth of 0.9 ram. It is the first time to report the joining of CFRTP to Cu by FLJ. As the joining speed increased, the tensile shear force (TSF) of joints increased first, and decreased thereafter. The maximum TSF could reach 2.3 kN ( 15 mm in width). Hydrogen bonding formed between the amide group of CFRTP and the thin Cu20 layer on the Cu surface, which mainly contributed to the joint bonding. The influence factors of the TSF of the joints at different joining speeds were discussed. The TSF was mainly affected by the joining area, the degradation of the plastic matrix and the number and the size of bubbles. As the joining speed increased, the influence factors varied as follows: the joining area increased first and then decreased; the degra- dation of the plastic matrix and the number and the size of bubbles decreased. The maximum TSF was the comprehensive result of the relatively large joining area, small degradation of the plastic matrix and small number and sizes of bubbles.
基金supported by Zijin Program of Zhejiang University,Chinathe Fundamental Research Funds for the Central Universities (No. 2010QNA4003)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No. 20100101120024)the Foundation of Education Office of Zhejiang Province (No. Y201016484)
文摘Sn/carbon-fibers(CFs) nanocomposite has been prepared by chemical vapor deposition with in-situ catalytic growth of CFs.The nanocomposite has been characterized by X-ray diffraction(XRD),field emission scanning electron microscopy(FE-SEM),transmission electron microscopy(TEM) and Raman spectrum.The electrochemical performance of the nanocomposite has been investigated by galvanostatic cycling and cyclic voltammetry(CV).It has been found that a three-dimensional conductive network forms by the interconnected CFs,which offers conductive channels for the Sn nanoparticles.The nanocomposite gives a first charge capacity of 385 mAh.g-1 and exhibits an improved cycling stability than bare Sn.