The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on ed...The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on edaphic parameters and grassland productivity has been extensively studied,while its decomposition processes and relevant mechanisms in this area remain poorly understood.We conducted a three-year litter decomposition experiment in the Gansu Gannan Grassland Ecosystem National Observation and Research Station,an alpine meadow ecosystem on the QTP,to investigate changes in litter enzyme activities and bacterial and fungal communities,and clarify how these critical factors regulated the decomposition of dominant plant Elymus nutans(E.nutans)litter.The results showed that cellulose and hemicellulose,which accounted for 95%of the initial lignocellulose content,were the main components in E.nutans litter decomposition.The litter enzyme activities ofβ-1,4-glucosidase(BG),β-1,4-xylosidase(BX),andβ-D-cellobiosidase(CBH)decreased with decomposition while acid phosphatase,leucine aminopeptidase,and phenol oxidase increased with decomposition.We found that both litter bacterial and fungal communities changed significantly with decomposition.Furthermore,bacterial communities shifted from copiotrophic-dominated to oligotrophic-dominated in the late stage of litter decomposition.Partial least squares path model revealed that the decomposition of E.nutans litter was mainly driven by bacterial communities and their secreted enzymes.Bacteroidota and Proteobacteria were important producers of enzymes BG,BX,and CBH,and their relative abundances were tightly positively related to the content of cellulose and hemicellulose,indicating that Bacteroidota and Proteobacteria are the main bacterial taxa of the decomposition of E.nutans litter.In conclusion,this study demonstrates that bacterial communities are the main driving forces behind the decomposition of E.nutans litter,highlighting the vital roles of bacterial communities in affecting the ecosystem functions of the QTP by regulating dominant plant litter decomposition.展开更多
To know the bacterial communities structure in Babylonia areolata culture systems and to research and optimize the management pattem of Babylonia areola-ta culture systems of the pond mulched plastic film and sand in ...To know the bacterial communities structure in Babylonia areolata culture systems and to research and optimize the management pattem of Babylonia areola-ta culture systems of the pond mulched plastic film and sand in bottom, the bacte- rial communities in Babylonia areolata culture systems of the sub-tidal zone and the pond mulched plastic film and sand in bottom were analyzed at molecular level by adopting the denaturing gradient gel electrophoresis (DGGE). The results indicated that the dominant bacterial communities in Babylonia areolata culture systems of the sub-tidal zone and the pond mulched plastic film and sand in bottom, which were built on the basis of the seawater in East-island of Zhanjiang, included Proteobac- teda Chloroflexi, Cyanobacteria and Actinobacteria. The dominant bacterial groups in the above pond culture system were Garnmaproteobacteria, Alphaproteobacteria, Deltaprotecbacteda, Epsilonproteobacteda, Anaerolineae, Cyanobacteria and Acti- nobacteda. The dominant bacterial communities in the subtidal zone culture system were Gammaprotecbacteda, Alphaproteobacteria, Deltaproteobacteria, Anaerolineae and Cyanobacteda, and there were less Epsilonproteobacteria and Actinobacteria in the culture system. The higher diversity was detected in the above two culture sys- tems. The results of unweighted pair group method with arithmetic average (UPG- MA) showed that the bacterial communities of the sediment samples S1 and S2 in the above two culture systems were a cluster, the similarity of bacterial communities was 54.5%. The bacterial communities of seawater samples S3 and S4 in the above culture systems were in clusters, and the similarity of the bacterial communi- ties was 84.0%. The results showed that the microorganism ecological level in the Babylonia areolata culture systems of the pond mulched plastic film and sand in bottom could be similar to the sub-tidal zone culture systems through changing the pond seawater and monitoring the microbial population.展开更多
The intestinal bacteria of vertebrates form a close relationship with their host.External and internal conditions of the host,including its habitat,affect the intestinal bacterial community.Similarly,the intestinal ba...The intestinal bacteria of vertebrates form a close relationship with their host.External and internal conditions of the host,including its habitat,affect the intestinal bacterial community.Similarly,the intestinal bacterial community can,in turn,influence the host,particularly with respect to disease resistance.We compared the intestinal bacterial communities of grass carp that were collected from farm-ponds or a lake.We conducted denaturing gradient gel electrophoresis of amplified 16S rRNA genes,from which 66 different operational taxonomic units were identified.Using both the unweighted pair-group method with arithmetic means clustering and principal component analysis ordination,we found that the intestinal bacterial communities from the two groups of pond fish were clustered together and inset into the clusters of wild fish,except for DF-7,and there was no significant correlation between genetic diversity of grass carp and their intestinal bacterial communities(Mantel one-tailed test,R=0.157,P=0.175).Cetobacterium appeared more frequently in the intestine of grass carp collected from pond.A more thorough understanding of the role played by intestinal microbiota on fish health would be of considerable benefit to the aquaculture industry.展开更多
Coated controlled-release fertilizers (CRFs) have been widely applied in agriculture due to their increased efficiency. However, the widespread and a lot of coated CRFs application may leave undesired coating residu...Coated controlled-release fertilizers (CRFs) have been widely applied in agriculture due to their increased efficiency. However, the widespread and a lot of coated CRFs application may leave undesired coating residues in the soil due to their slow degradation. Limited information is available on the effects of substantial residual coatings on the soil bacterial community. By adding 0, 5, 10, 20, and 50 times quantities of residual coating from conventional application amount of resin and water-soluble coated CRFs, we studied the responses of soil properties and bacterial community composition to these two residual coatings in black soil. The results showed that the resin and water-soluble coatings did not essentially alter the properties of black soil or cause dramatic changes to bacterial diversity within the test concentration range. The residual resin and water-soluble coatings also did not distinctly alter the relative abundance of the top ten bacteria at phylum level. Heatmap results suggested that the treatments were basically clustered into two groups by concentration rather than types of coating material. Pearson correlation analysis showed that the Simpson's diversity index of the bacterial community was significantly correlated with microbial biomass carbon (MBC, r=0.394, P〈0.05), and the richness index abundance-based coverage estimator (ACE) of the bacterial community was significantly correlated with microbial biomass nitrogen (MBN, t=0.407, P〈0.05). Overall, results of this study suggested that substantial residual resin and water-soluble coatings with 0-50 times quantities of residual coating from conventional application amount of coated CRFs did not generate obviously negative impacts on the bacterial community in black soil.展开更多
Bacterial community presumably plays an essential role in inhibiting pathogen colonization and maintaining the health of scallop larvae, but limiting data are available for Yesso scallop (Patinopecten yessoensisis Ja...Bacterial community presumably plays an essential role in inhibiting pathogen colonization and maintaining the health of scallop larvae, but limiting data are available for Yesso scallop (Patinopecten yessoensisis Jay, 1857) larval development stages. The aim of this study was to characterize and compare the bacterial communities associating with Yesso scallop larval development at fertilized egg S l, trochophora S2, D-shaped larvae S3, umbo larvae S4, and juvenile scallop S5 stages by Illumina high-throughput sequencing. Genomic DNA was extracted from the larvae and their associating baetera, and a gene segment covering V3-V4 region of 16S rRNA gene was amplified and sequenced using an Illumina Miseq sequencer. Overall, 106760 qualified sequences with an average length of 449 bp were obtained. Sequences were compared with those retrieved from 16S rRNA gene databases, and 4 phyla, 7 classes, 15 orders, 21 families, 31 genera were identified. Proteobacteria was predominant phylum, accounting for more than 99%, at all 5 larval development stages. At genus level, Pseudomonas was dominant at stages S1 (80.60%), S2 (87.77%) and S5 (68.71%), followed by Photobacterium (17.06%) and Aeromonas (1.64%) at stage S1, Serratia (6.94%), Stenotrophomonas (3.08%) and Acinetobacter (1.2%) at stage S2, Shewanella (25.95%) and Pseudoalteromonas (4.57%) at stage S5. Moreover, genus Pseudoal- teromonas became dominant at stages S3 (44.85%) and S4 (56.02%), followed by Photobacterium (29.82%), Pseudomonas (11.86%), Aliivibrio (8.60%) and Shewanella (3.39%) at stage S3, Pseudomonas (18.16%), Aliivibrio (14.29%), Shewanella (4.11%), Psychro- monas (4.04%) and Psychrobacter (1.81%) at stage S4. From the results, we concluded that the bacterial community changed sig- nificantly at different development stages of Yesso Scallop larvae.展开更多
Besides being critical components of marine food web,microorganisms play vital roles in biogeochemical cycling of nutrients and elements in the ocean.Currently little is known about microbial population structure and ...Besides being critical components of marine food web,microorganisms play vital roles in biogeochemical cycling of nutrients and elements in the ocean.Currently little is known about microbial population structure and their distributions in the eastern Indian Ocean.In this study,we applied molecular approaches including polymerase chain reaction-denaturant gradient gel electrophoresis(PCR-DGGE) and High-Throughput next generation sequencing to investigate bacterial 16S rRNA genes from the equatorial regions and the adjacent Bay of Bengal in the eastern Indian Ocean.In general,Bacteroidetes,Proteobacteria(mainly Alpha,and Gamma),Actinobacteria,Cyanobacteria and Planctomycetes dominated the microbial communities.Horizontally distinct spatial distribution of major microbial groups was observed from PCR-DGGE gel image analyses.However,further detailed characterization of community structures by pyrosequencing suggested a more pronounced stratified distribution pattern:Cyanobacteria and Actinobacteria were more predominant at surface water(25m);Bacteroidetes dominated at 25m and 150m while Proteobacteria(mainly Alphaproteobacteria) occurred more frequently at 75m water depth.With increasing water depth,the bacterial communities from different locations tended to share high similarity,indicating a niche partitioning for minor groups of bacteria recovered with high throughput sequencing approaches.This study provided the first "snapshot" on biodiversity and spatial distribution of Bacteria in water columns in the eastern Indian Ocean,and the findings further emphasized the potential functional roles of these microbes in energy and resource cycling in the eastern Indian Ocean.展开更多
Microbiota in the gastrointestinal tract (GIT) of piglets during weaning transition can experience a sharp change which could result in growth reduction and diarrhea of weaned piglets. Dietary manipulations can play...Microbiota in the gastrointestinal tract (GIT) of piglets during weaning transition can experience a sharp change which could result in growth reduction and diarrhea of weaned piglets. Dietary manipulations can play an important role in attenuating such changes caused by weaning stress. Therefore, ileal and colonic contents of weaned piglets were used as inocula, mannan oligosaccharide (MOS) or sugar beet pulp (SBP) was supplied as single energy sources to investigate effects of MOS or SBP on the shifts of gastro-intestinal microflora and lactobacilli populations. The universal bacteria- and lactobacilli-specific PCR/denaturing gradient gel electrophoresis (DGGE), cloning and sequencing techniques were used. DGGE profiles of the universal bacteria showed that great changes were found in the position, numbers and intensity of dominant bands after fermentation. The similarity of bacterial community between ileum and colon was increased to 85-97% by MOS or SBP treatment after fermentation from the similarity with 20% before fermentation. MOS treatment significantly increased the bacterial diversity and band number in both ileal and colonic fermentation (P〈0.05). SBP treatment significantly increased the bacterial diversity and band number in colon (P〈0.05). It implies that some species were enriched by the addition of MOS or SBP to increase the similarity and diversity of bacterial community in weaned piglets. Five specific bands appearing in MOS or SBP treatment group after fermentation were cloned and sequenced, the changes of species related to Prevotella and Ruminococcus were observed. Two bands related to uncultured bacterium with 98% similarity were detected by MOS or SBP treatment. However, there were no effects on the similarity, diversity index and lactobacilli species revealed by MOS or SBP treatment. These results imply that MOS or SBP could have beneficial effects on the weaning piglets by stablizing microbiota in the GIT microflora.展开更多
Available information on the microbial mechanisms associated with heavy metal(HM)passivation during co-composting amended with phosphate rock(PR)remains limited.Thus,this study investigated the dynamic changes in bact...Available information on the microbial mechanisms associated with heavy metal(HM)passivation during co-composting amended with phosphate rock(PR)remains limited.Thus,this study investigated the dynamic changes in bacterial communities and HM-fractions(Zn,Cu,Cd,Cr and Pb)during swine manure composting with maize straw,and ascertained the bacterial influence on HM-passivation.The results demonstrated that the addition of PR improved HM-passivation,especially for Zn and Cd,with their bioavailability factors(BFs)reduced by 247.41 and 176.25%,respectively.As for bacterial communities,the proportion of Firmicutes decreased,while the proportions of Proteobacteria,Bacteroidetes,DeinococcusThermus and Gemmatimonadetes increased in all treatments.PR significantly changed the primary bacterial phyla in the thermophilic phase.Bacteroidetes were the main bacterial component controlling the passivation of Zn,Cu and Cr,while Deinococcus-Thermus mainly regulated the mobility of Zn and Pb,and Proteobacteria only dominated the transformation among Cd-fractions.These results may provide a reference for the use of HM-passivation techniques during composting.展开更多
This study was conducted to evaluate the impact of hazy and foggy weather on the bacterial communities in bioaerosols, for which samples were collected from the Qingdao coastal region on sunny, foggy, and hazy days in...This study was conducted to evaluate the impact of hazy and foggy weather on the bacterial communities in bioaerosols, for which samples were collected from the Qingdao coastal region on sunny, foggy, and hazy days in January and March 2013. Bacterial community compositions were determined using polymerase chain reaction denaturing gradient gel electrophoresis(PCR-DGGE). The bacterial community diversity was found to be high on foggy and hazy days, and the dominant species differed during hazy weather. The Shannon-Wiener index revealed that the bacterial community diversity of coarse particles was higher than that of fine particles in the bioaerosols. The bacterial community diversity of fine particles significantly correlated with relative humidity(RH; r^2 = 0.986). The cluster analysis results indicated that the bacterial communities on sunny days differed from those on hazy and foggy days. Compared with sunny days, the bacterial communities in the fine particles during hazy weather exhibited greater changes than those in the coarse particles. Most of the sequenced bacteria were found to be closely affiliated with uncultured bacteria. During hazy weather, members of the classes Bacilli and Gammaproteobacteria(Pseudomonas and Acinetobacter) were dominant. The DGGE analysis revealed that Proteobacteria and Firmicutes were the predominant phyla, and their relative percentages to all the measured species changed significantly on hazy days, particularly in the fine particles. Haze and fog had a significant impact on the bacterial communities in bioaerosols, and the bacterial community diversity varied on different hazy days.展开更多
Straits are ideal models to investigate the bacterial community assembly in complex hydrological environments. However, few studies have focused on bacterial communities in them. Here, comparable bacterial communities...Straits are ideal models to investigate the bacterial community assembly in complex hydrological environments. However, few studies have focused on bacterial communities in them. Here, comparable bacterial communities in costal shallow Bohai Strait(BS) and oceanic deep Fram Strait(FS) were studied. The Shannon and Chao1 indices were both higher in BS than in FS. The relative abundances of the classes Deltaproteobacteria and Bacilli and the family Halieaceae were higher in BS than in FS, in contrast to the families OM1_clade and JTB255_marine_benthic_group, revealing typical characteristics of bacterial communities in coastal and oceanic regions. Cluster analysis based on the Bray-Curtis index showed that samples were clustered by depth layer in FS and BS, indicating that structures of bacterial communities would diff er with increasing water depth in straits. Additionally, the cluster relationships among samples in abundant and rare communities were both similar to those in entire communities. However, the dissimilarities among samples showed a descending order as rare communities, entire communities and abundant communities. Network analysis indicated that the BS network was obviously more complex than the FS network. Filamentous bacteria Desulfobulbaceae exhibited high degree values in BS but not in FS, indicating key roles of Desulfobulbaceae in the BS. Our study provides different and common evidences for understanding microbial ecology in coastal shallow and oceanic deep straits.展开更多
In this study, the effects of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt on soil microbial communities and disease resist- ance of tobacco were investigated by field experiment. T...In this study, the effects of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt on soil microbial communities and disease resist- ance of tobacco were investigated by field experiment. The results showed that the incidence of tobacco bacterial wilt in bio-organic fertilizer treatments (T3 and T4) decreased remarkably among four treatments in the field. Compared with the local conventional fertilization group, the incidence of tobacco bacterial wilt was re- duced by 21.9% and 25.0% in T3 and T4, respectively ; the yield of flue-cured tobacco was improved by 5.7% and 5.3%, respectively ; the proportion of mid- high grade tobacco leaves increased by 2.3% and 2.6%, respectively. After application of bio-organie fertilizer with antagonistic bacteria against tobacco bacterial wilt, rhizosphere soil microbial communities exhibited vast amount and abundant species ; the amount of rhizosphere soil bacteria of infected tobacco plants was im- proved by 218.5% with fewer species. It could be concluded that the application of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt could improve the ecological environment of tobacco field, inhibit the growth of pathogenic bacteria, decrease the incidence of tobacco bacterial wilt, and enhance the quality of flue-cured tobacco. This study laid the foundation for further ecological prevention and control of soil-borne diseases of tobacco.展开更多
Soft rot disease causes heavy loss in konjac production every year, which caused by the genus Pectobacterium has been recognized as a major reason why konjac industry has not boomed in worldwide. However, intercroppin...Soft rot disease causes heavy loss in konjac production every year, which caused by the genus Pectobacterium has been recognized as a major reason why konjac industry has not boomed in worldwide. However, intercropping with economically important trees can effectively control affect soft rot disease epidemics. Consequently, we conducted a rhizosphere bacterial diversity study to assess how intercropping affects soft rot disease using next-generation DNA sequencing. The results demonstrate the Shannon diversity index and Chao 1 index for soil bacteria were relatively steady under intercropping conditions, but changed greatly for the konjac monocrop with the increase in the number of cropping years. Of the 44 bacterial genera with relative abundance ratios of >0.3%, 11 were significantly affected by the duration of continuous cropping and the cultivation mode. Luteolibacter and Bacteroides showed highly significant differences between the monocrop and the intercrop for three continuous years. Pseudomonas was significantly affected by the different cultivation modes, while Myroides was significantly affected by planting age. Intercropping altered the structure and composition of the soil bacterial community, which led to a relative balance of beneficial bacteria, and the relative balance of beneficial bacteria is helpful to reduce the incidence of soft rot.展开更多
Sexual dimorphism of plants shapes the diff erent morphology and physiology between males and females.However,it is still unclear whether it infl uences belowground ecological processes.In this study,rhizosphere soil ...Sexual dimorphism of plants shapes the diff erent morphology and physiology between males and females.However,it is still unclear whether it infl uences belowground ecological processes.In this study,rhizosphere soil of male and female Populus deltoides and bulk soil were collected from an 18-year plantation(male and female trees mix-planted)and grouped into three soil compartments.Soil carbon(C),nitrogen(N)and phosphorus(P)levels were determined,and soil bacterial communities were analyzed by high-throughput sequencing.The results showed the less total carbon and total organic carbon,the more nutrients(available phosphorus,nitrate nitrogen and ammonium nitrogen)available in the rhizosphere soils of female poplars than soils of males.However,α-diversity indices of the rhizosphere bacterial communities under male plants were signifi-cantly higher.Principal component analysis showed that the bacterial communities were signifi cantly diff erent between the male and female soil compartments.Further,the bacterial co-occurrence network in soil under male trees had more nodes and edges than under females.BugBase analysis showed the more functional bacteria taxa related to biofi lm formation and antioxidation under males.The results indicate that soils under male poplars had more diverse and more complex co-occurrence networks of the rhizosphere bacterial community than soils under female trees,implying that male poplars might have better environmental adaptability.The study provides insight into the diff erent soil-microbe interactions of dioecious plants.More details about the infl uencing mechanism of sexual dimorphism on rhizosphere soil bacterial communities need to be further studied.展开更多
Bacteria play a major role in metabolizing ammonia and other metabolites in recirculating aquaculture systems(RASs).To characterize and compare the bacterial communities in the biofilters of two full-scale RASs for th...Bacteria play a major role in metabolizing ammonia and other metabolites in recirculating aquaculture systems(RASs).To characterize and compare the bacterial communities in the biofilters of two full-scale RASs for the culture of puffer fish,Takifugu rubripes,at different ages and densities were studied.In overall,47807 optimized reads of the 16 S rRNA gene with V4-V5 region were obtained from four biofilm samples collected after biofilm maturation.At 97%cut-off level,these sequences were clustered into 500 operational taxonomic units,and were classified into 19 bacterial phyla and 138 genera.At the phylum level,Proteobacteria and Bacteroidetes were the most abundant,followed by Nitrospirae and Planctomycetes.At the genus level,Colwellia,Marinifilum,Oceanospirillum,Lutibacter,Winogradskyella,Pseudoalteromonas,Arcobacter,and Phaeobacter were the top members.Nitrosomonas and Nitrospira were main ammonia-and nitrite-oxidizing bacteria.Differences in bacterial communities at different sampling dates and similarities of both biofilters were revealed in the Venn diagram and cluster analysis.Maintaining a good water quality and health offarmed fish in RASs depended on the correct management of the bacterial communities.This study provides more accurate information on the bacterial communities associated with the bifilters of both RASs.展开更多
The relatively simple vegetation of the Arctic tundra provides an ideal site in which to study the relationships between plants, bacterial communities and soil chemistry. Here, results of 16S rRNA gene sequencing of s...The relatively simple vegetation of the Arctic tundra provides an ideal site in which to study the relationships between plants, bacterial communities and soil chemistry. Here, results of 16S rRNA gene sequencing of secondary Arctic brown soils collected from underneath colonies of Dryasoctopetala, Luzulaconfusa and Bistortavivipara in the Arctic tundra near Ny-Alesund, Svalbard, Norway, reveal significant differences in bacterial communities related to soil environmental properties. Redundancy analysis shows that all measured geochemical factors were significant in structuring microbiomes, with strong correlations related to soil pH and organic matter contents. Vegetation is likely to affect the physical and chemical properties of the soil, which in turn affects the bacterial community and composition of the soil.展开更多
Diversity in bacterial communities was investigated along a petroleum hydrocarbon content gradient(0-0.4043 g/g)in surface(5-10 cm)and subsurface(35-40 cm)petroleum-contaminated soil samples from the Dagang Oilfield,C...Diversity in bacterial communities was investigated along a petroleum hydrocarbon content gradient(0-0.4043 g/g)in surface(5-10 cm)and subsurface(35-40 cm)petroleum-contaminated soil samples from the Dagang Oilfield,China.Using 16S rRNA Illumina high-throughput sequencing technology and several statistical methods,the bacterial diversity of the soil was studied.Subsequently,the environmental parameters were measured to analyze its relationship with the community variation.Nonmetric multidimensional scaling and analysis of similarities indicated a significant difference in the structure of the bacterial community between the nonpetroleum-contaminated surface and subsurface soils,but no differences were observed in different depths of petroleum-contaminated soil.Meanwhile,many significant correlations were obtained between diversity in soil bacterial community and physicochemical properties.Total petroleum hydrocarbon,total organic carbon,and total nitrogen were the three important factors that had the greatest impacts on the bacterial community distribution in the long-term petroleum-contaminated soils.Our research has provided references for the bacterial community distribution along a petroleum gradient in both surface and subsurface petroleum-contaminated soils of oilfield areas.展开更多
This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was obser...This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquobocterium might contribute to the formation of colored water.展开更多
Marine bacteria have recently been identified as a potent solution for petroleum hydrocarbon degradation in response to hazardous oceanic oil spills. In this study, a mesocosm experiment simulating a petroleum spill e...Marine bacteria have recently been identified as a potent solution for petroleum hydrocarbon degradation in response to hazardous oceanic oil spills. In this study, a mesocosm experiment simulating a petroleum spill event was performed to investigate changes in the abundance, structure, and productivity of bacterial communities in response to oil pollution. Cultured heterotrophic bacteria and total bacteria showed a consistent trend involving an immediate decrease in abundance, followed by a slight increase, and a steady low-level thereafter. However, the changing trend of bacterial productivity based on bacterial biomass and bacterial volume showed the opposite trend. In addition, the density of oil-degrading bacteria increased initially, then subsequently declined. The change in the bacterial community structure at day 0 and day 28 were also analyzed by amplified ribosomal DNA restriction analysis (ARDRA), which indicated that the species diversity of the bacterial community changed greatly after oil pollution. Alphaproteobacteria (40.98%) replaced Epsilonproteobacteria (51.10%) as the most abundant class, and Gammaproteobacteria (38.80%) became the second most dominant class in the whole bacterial community. The bacterial communities in oil-contaminated seawater (32 genera) became much more complex than those found in the natural seawater sample (16 genera). The proportion of petroleum-degrading bacteria in the oil-contaminated seawater also increased. In this study, culture-dependent and culture-independent approaches were combined to elucidate changes in both bacterial productivity and community structure. These findings will contribute to a better understanding of the role that bacteria play in material cycling and degradation in response to oil pollution.展开更多
Bioremediation, is an effective and environment-friendly method of cleaning up crude oil pollution after an oil spill. However, the in situ bioremediation of crude oil is usually inhibited by deficiency of inorganic n...Bioremediation, is an effective and environment-friendly method of cleaning up crude oil pollution after an oil spill. However, the in situ bioremediation of crude oil is usually inhibited by deficiency of inorganic nutrients. To understand the effects of nutrient addition on the bioremediation of crude oil and the succession of bacterial communities during process of bioremediation, microcosms containing oilcontaminated sediments were constructed and biodegradation of crude oil was assessed based on the depletion of different ingredients. We used two culture-independent methods, denaturing gradient gel electrophoresis and a 16 S rRNA gene based clone library, to analyze the succession of bacterial communities. The results suggested n-alkanes were degraded after 30 days and that nutrient amendments significantly improved the efficiency of their biodegradation. Moreover, oil contamination and nutrient amendments could dramatically change bacterial community structures. Lower diversity was detected after being contaminated with oil. For instance, bacterial clones affiliated with the phylum Armatimonadetes, Firmicutes, Gemmatimonadetes, and Planctomycetes and the class Deltaproteobacteria and Epsilonproteobacteria could not be identified after 30 days of incubation with crude oil. However, "professional hydrocarbonocastic bacteria" became abundant in samples treated with oil during the bioremediation period, while these clones were almost completely absent from the control plots. Interestingly, bioinformatics analysis showed that even when dramatic differences in oil biodegradation efficiency were observed, bacterial communities in the plots with nutrient amendments were not significantly different from those in plots treated with oil alone. These findings indicated that nutrient amendments could stimulate the process of biodegradation but had less impact on bacterial communities. Overall, nutrient amendments might be able to stimulate the growth of n-alkane degrading bacteria.展开更多
Marine spatial planning(MSP)is designed to divide the sea area into different types of functional zones,to implement corresponding development activities.However,the long-term impacts of anthropogenic activities assoc...Marine spatial planning(MSP)is designed to divide the sea area into different types of functional zones,to implement corresponding development activities.However,the long-term impacts of anthropogenic activities associated with MSP practice on the marine microbial biosphere are still unclear.Yalu River Estuary,a coastal region in northeast of China,has been divided into fishery&agricultural(F&A)zone,shipping&port(S&P)zone and marine protected area(MPA)zone by a local MSP guideline that has been run for decades.To examine the effects of long-term executed MSP,benthic bacterial communities from different MSP zones were obtained and compared in this study.The results revealed significant differences in the bacterial community structure and predict functions among different zones.Bacterial genera enriched in different zones were identified,including SBR1031 in MPA,Woeseia and Sva0996 in S&P,and Halioglobus in F&A.In addition,correlations between some bacterial genera and sediment pollutants were uncovered.Furthermore,bacteria related to sulphide production were more abundant in the F&A zone,which was according to the accumulation of sulphides in this area.Moreover,bacteria associated with chemoheterotrophy and fermentation were more predominant in the S&P zone,consistent with high levels of organic matter and petroleum caused by shipping.Our findings indicated benthic bacterial communities could bring to light the anthropogenic activity footprints by different activities induced by long-term MSP practice.展开更多
基金funded by the National Natural Science Foundation of China(31870435)the European Union's Marie Sklodowska-Curie Action Postdoctoral Fellowship(101061660)the China Scholarship Council(202106180060).
文摘The dominant plant litter plays a crucial role in carbon(C)and nutrients cycling as well as ecosystem functions maintenance on the Qinghai-Tibet Plateau(QTP).The impact of litter decomposition of dominant plants on edaphic parameters and grassland productivity has been extensively studied,while its decomposition processes and relevant mechanisms in this area remain poorly understood.We conducted a three-year litter decomposition experiment in the Gansu Gannan Grassland Ecosystem National Observation and Research Station,an alpine meadow ecosystem on the QTP,to investigate changes in litter enzyme activities and bacterial and fungal communities,and clarify how these critical factors regulated the decomposition of dominant plant Elymus nutans(E.nutans)litter.The results showed that cellulose and hemicellulose,which accounted for 95%of the initial lignocellulose content,were the main components in E.nutans litter decomposition.The litter enzyme activities ofβ-1,4-glucosidase(BG),β-1,4-xylosidase(BX),andβ-D-cellobiosidase(CBH)decreased with decomposition while acid phosphatase,leucine aminopeptidase,and phenol oxidase increased with decomposition.We found that both litter bacterial and fungal communities changed significantly with decomposition.Furthermore,bacterial communities shifted from copiotrophic-dominated to oligotrophic-dominated in the late stage of litter decomposition.Partial least squares path model revealed that the decomposition of E.nutans litter was mainly driven by bacterial communities and their secreted enzymes.Bacteroidota and Proteobacteria were important producers of enzymes BG,BX,and CBH,and their relative abundances were tightly positively related to the content of cellulose and hemicellulose,indicating that Bacteroidota and Proteobacteria are the main bacterial taxa of the decomposition of E.nutans litter.In conclusion,this study demonstrates that bacterial communities are the main driving forces behind the decomposition of E.nutans litter,highlighting the vital roles of bacterial communities in affecting the ecosystem functions of the QTP by regulating dominant plant litter decomposition.
基金Supported by the Special Program of Scientific and Technological Promotion of Fisheries in Guangdong(A201101I01,A201208E01)the Guangdong Scientific and Technological Planning Program(2012B020415006)~~
文摘To know the bacterial communities structure in Babylonia areolata culture systems and to research and optimize the management pattem of Babylonia areola-ta culture systems of the pond mulched plastic film and sand in bottom, the bacte- rial communities in Babylonia areolata culture systems of the sub-tidal zone and the pond mulched plastic film and sand in bottom were analyzed at molecular level by adopting the denaturing gradient gel electrophoresis (DGGE). The results indicated that the dominant bacterial communities in Babylonia areolata culture systems of the sub-tidal zone and the pond mulched plastic film and sand in bottom, which were built on the basis of the seawater in East-island of Zhanjiang, included Proteobac- teda Chloroflexi, Cyanobacteria and Actinobacteria. The dominant bacterial groups in the above pond culture system were Garnmaproteobacteria, Alphaproteobacteria, Deltaprotecbacteda, Epsilonproteobacteda, Anaerolineae, Cyanobacteria and Acti- nobacteda. The dominant bacterial communities in the subtidal zone culture system were Gammaprotecbacteda, Alphaproteobacteria, Deltaproteobacteria, Anaerolineae and Cyanobacteda, and there were less Epsilonproteobacteria and Actinobacteria in the culture system. The higher diversity was detected in the above two culture sys- tems. The results of unweighted pair group method with arithmetic average (UPG- MA) showed that the bacterial communities of the sediment samples S1 and S2 in the above two culture systems were a cluster, the similarity of bacterial communities was 54.5%. The bacterial communities of seawater samples S3 and S4 in the above culture systems were in clusters, and the similarity of the bacterial communi- ties was 84.0%. The results showed that the microorganism ecological level in the Babylonia areolata culture systems of the pond mulched plastic film and sand in bottom could be similar to the sub-tidal zone culture systems through changing the pond seawater and monitoring the microbial population.
基金Supported by the National Basic Research Program of China(973 Program)(No.2009CB118705)the National Natural Science Foundation of China(No.30970358)
文摘The intestinal bacteria of vertebrates form a close relationship with their host.External and internal conditions of the host,including its habitat,affect the intestinal bacterial community.Similarly,the intestinal bacterial community can,in turn,influence the host,particularly with respect to disease resistance.We compared the intestinal bacterial communities of grass carp that were collected from farm-ponds or a lake.We conducted denaturing gradient gel electrophoresis of amplified 16S rRNA genes,from which 66 different operational taxonomic units were identified.Using both the unweighted pair-group method with arithmetic means clustering and principal component analysis ordination,we found that the intestinal bacterial communities from the two groups of pond fish were clustered together and inset into the clusters of wild fish,except for DF-7,and there was no significant correlation between genetic diversity of grass carp and their intestinal bacterial communities(Mantel one-tailed test,R=0.157,P=0.175).Cetobacterium appeared more frequently in the intestine of grass carp collected from pond.A more thorough understanding of the role played by intestinal microbiota on fish health would be of considerable benefit to the aquaculture industry.
基金supported by the International Scientific and Technological Cooperation Projects of China (2015DFA20790)the National Natural Science Foundation of China (21577172,41501322)the National Basic Research Program (973 program) of China (2013CB127406)
文摘Coated controlled-release fertilizers (CRFs) have been widely applied in agriculture due to their increased efficiency. However, the widespread and a lot of coated CRFs application may leave undesired coating residues in the soil due to their slow degradation. Limited information is available on the effects of substantial residual coatings on the soil bacterial community. By adding 0, 5, 10, 20, and 50 times quantities of residual coating from conventional application amount of resin and water-soluble coated CRFs, we studied the responses of soil properties and bacterial community composition to these two residual coatings in black soil. The results showed that the resin and water-soluble coatings did not essentially alter the properties of black soil or cause dramatic changes to bacterial diversity within the test concentration range. The residual resin and water-soluble coatings also did not distinctly alter the relative abundance of the top ten bacteria at phylum level. Heatmap results suggested that the treatments were basically clustered into two groups by concentration rather than types of coating material. Pearson correlation analysis showed that the Simpson's diversity index of the bacterial community was significantly correlated with microbial biomass carbon (MBC, r=0.394, P〈0.05), and the richness index abundance-based coverage estimator (ACE) of the bacterial community was significantly correlated with microbial biomass nitrogen (MBN, t=0.407, P〈0.05). Overall, results of this study suggested that substantial residual resin and water-soluble coatings with 0-50 times quantities of residual coating from conventional application amount of coated CRFs did not generate obviously negative impacts on the bacterial community in black soil.
基金financial support from Zhang Zidao Sland Group Co.,Ltd. for the project (99801214)
文摘Bacterial community presumably plays an essential role in inhibiting pathogen colonization and maintaining the health of scallop larvae, but limiting data are available for Yesso scallop (Patinopecten yessoensisis Jay, 1857) larval development stages. The aim of this study was to characterize and compare the bacterial communities associating with Yesso scallop larval development at fertilized egg S l, trochophora S2, D-shaped larvae S3, umbo larvae S4, and juvenile scallop S5 stages by Illumina high-throughput sequencing. Genomic DNA was extracted from the larvae and their associating baetera, and a gene segment covering V3-V4 region of 16S rRNA gene was amplified and sequenced using an Illumina Miseq sequencer. Overall, 106760 qualified sequences with an average length of 449 bp were obtained. Sequences were compared with those retrieved from 16S rRNA gene databases, and 4 phyla, 7 classes, 15 orders, 21 families, 31 genera were identified. Proteobacteria was predominant phylum, accounting for more than 99%, at all 5 larval development stages. At genus level, Pseudomonas was dominant at stages S1 (80.60%), S2 (87.77%) and S5 (68.71%), followed by Photobacterium (17.06%) and Aeromonas (1.64%) at stage S1, Serratia (6.94%), Stenotrophomonas (3.08%) and Acinetobacter (1.2%) at stage S2, Shewanella (25.95%) and Pseudoalteromonas (4.57%) at stage S5. Moreover, genus Pseudoal- teromonas became dominant at stages S3 (44.85%) and S4 (56.02%), followed by Photobacterium (29.82%), Pseudomonas (11.86%), Aliivibrio (8.60%) and Shewanella (3.39%) at stage S3, Pseudomonas (18.16%), Aliivibrio (14.29%), Shewanella (4.11%), Psychro- monas (4.04%) and Psychrobacter (1.81%) at stage S4. From the results, we concluded that the bacterial community changed sig- nificantly at different development stages of Yesso Scallop larvae.
基金The Program for New Century Excellent Talents in University under contract No.NCET-12-1065the National Natural Science Foundation of China under contract Nos 41276124 and 41176136+1 种基金the Science Fund for University Creative Research Groups in Tianjin under contract No.TD12-5003the Program for Changjiang Scholars to J Sun
文摘Besides being critical components of marine food web,microorganisms play vital roles in biogeochemical cycling of nutrients and elements in the ocean.Currently little is known about microbial population structure and their distributions in the eastern Indian Ocean.In this study,we applied molecular approaches including polymerase chain reaction-denaturant gradient gel electrophoresis(PCR-DGGE) and High-Throughput next generation sequencing to investigate bacterial 16S rRNA genes from the equatorial regions and the adjacent Bay of Bengal in the eastern Indian Ocean.In general,Bacteroidetes,Proteobacteria(mainly Alpha,and Gamma),Actinobacteria,Cyanobacteria and Planctomycetes dominated the microbial communities.Horizontally distinct spatial distribution of major microbial groups was observed from PCR-DGGE gel image analyses.However,further detailed characterization of community structures by pyrosequencing suggested a more pronounced stratified distribution pattern:Cyanobacteria and Actinobacteria were more predominant at surface water(25m);Bacteroidetes dominated at 25m and 150m while Proteobacteria(mainly Alphaproteobacteria) occurred more frequently at 75m water depth.With increasing water depth,the bacterial communities from different locations tended to share high similarity,indicating a niche partitioning for minor groups of bacteria recovered with high throughput sequencing approaches.This study provided the first "snapshot" on biodiversity and spatial distribution of Bacteria in water columns in the eastern Indian Ocean,and the findings further emphasized the potential functional roles of these microbes in energy and resource cycling in the eastern Indian Ocean.
基金funded by the National Basic Research Program of China (973 Program,2004CB117500)
文摘Microbiota in the gastrointestinal tract (GIT) of piglets during weaning transition can experience a sharp change which could result in growth reduction and diarrhea of weaned piglets. Dietary manipulations can play an important role in attenuating such changes caused by weaning stress. Therefore, ileal and colonic contents of weaned piglets were used as inocula, mannan oligosaccharide (MOS) or sugar beet pulp (SBP) was supplied as single energy sources to investigate effects of MOS or SBP on the shifts of gastro-intestinal microflora and lactobacilli populations. The universal bacteria- and lactobacilli-specific PCR/denaturing gradient gel electrophoresis (DGGE), cloning and sequencing techniques were used. DGGE profiles of the universal bacteria showed that great changes were found in the position, numbers and intensity of dominant bands after fermentation. The similarity of bacterial community between ileum and colon was increased to 85-97% by MOS or SBP treatment after fermentation from the similarity with 20% before fermentation. MOS treatment significantly increased the bacterial diversity and band number in both ileal and colonic fermentation (P〈0.05). SBP treatment significantly increased the bacterial diversity and band number in colon (P〈0.05). It implies that some species were enriched by the addition of MOS or SBP to increase the similarity and diversity of bacterial community in weaned piglets. Five specific bands appearing in MOS or SBP treatment group after fermentation were cloned and sequenced, the changes of species related to Prevotella and Ruminococcus were observed. Two bands related to uncultured bacterium with 98% similarity were detected by MOS or SBP treatment. However, there were no effects on the similarity, diversity index and lactobacilli species revealed by MOS or SBP treatment. These results imply that MOS or SBP could have beneficial effects on the weaning piglets by stablizing microbiota in the GIT microflora.
基金the National Key Research and Development Program of China(2018YFD0500205)the Strategic Priority Research Program of the Chinese Academy Sciences(XDA23070502)。
文摘Available information on the microbial mechanisms associated with heavy metal(HM)passivation during co-composting amended with phosphate rock(PR)remains limited.Thus,this study investigated the dynamic changes in bacterial communities and HM-fractions(Zn,Cu,Cd,Cr and Pb)during swine manure composting with maize straw,and ascertained the bacterial influence on HM-passivation.The results demonstrated that the addition of PR improved HM-passivation,especially for Zn and Cd,with their bioavailability factors(BFs)reduced by 247.41 and 176.25%,respectively.As for bacterial communities,the proportion of Firmicutes decreased,while the proportions of Proteobacteria,Bacteroidetes,DeinococcusThermus and Gemmatimonadetes increased in all treatments.PR significantly changed the primary bacterial phyla in the thermophilic phase.Bacteroidetes were the main bacterial component controlling the passivation of Zn,Cu and Cr,while Deinococcus-Thermus mainly regulated the mobility of Zn and Pb,and Proteobacteria only dominated the transformation among Cd-fractions.These results may provide a reference for the use of HM-passivation techniques during composting.
基金supported by the National Natural Science Foundation of China (No. 41775148)the Program for New Century Excellent Talents in University (No. NCET-13-0531)the Fundamental Research Funds for the Central Universities (No. 201762006)
文摘This study was conducted to evaluate the impact of hazy and foggy weather on the bacterial communities in bioaerosols, for which samples were collected from the Qingdao coastal region on sunny, foggy, and hazy days in January and March 2013. Bacterial community compositions were determined using polymerase chain reaction denaturing gradient gel electrophoresis(PCR-DGGE). The bacterial community diversity was found to be high on foggy and hazy days, and the dominant species differed during hazy weather. The Shannon-Wiener index revealed that the bacterial community diversity of coarse particles was higher than that of fine particles in the bioaerosols. The bacterial community diversity of fine particles significantly correlated with relative humidity(RH; r^2 = 0.986). The cluster analysis results indicated that the bacterial communities on sunny days differed from those on hazy and foggy days. Compared with sunny days, the bacterial communities in the fine particles during hazy weather exhibited greater changes than those in the coarse particles. Most of the sequenced bacteria were found to be closely affiliated with uncultured bacteria. During hazy weather, members of the classes Bacilli and Gammaproteobacteria(Pseudomonas and Acinetobacter) were dominant. The DGGE analysis revealed that Proteobacteria and Firmicutes were the predominant phyla, and their relative percentages to all the measured species changed significantly on hazy days, particularly in the fine particles. Haze and fog had a significant impact on the bacterial communities in bioaerosols, and the bacterial community diversity varied on different hazy days.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020403)the National Natural Science Foundation of China(Nos.41576165,41376138)
文摘Straits are ideal models to investigate the bacterial community assembly in complex hydrological environments. However, few studies have focused on bacterial communities in them. Here, comparable bacterial communities in costal shallow Bohai Strait(BS) and oceanic deep Fram Strait(FS) were studied. The Shannon and Chao1 indices were both higher in BS than in FS. The relative abundances of the classes Deltaproteobacteria and Bacilli and the family Halieaceae were higher in BS than in FS, in contrast to the families OM1_clade and JTB255_marine_benthic_group, revealing typical characteristics of bacterial communities in coastal and oceanic regions. Cluster analysis based on the Bray-Curtis index showed that samples were clustered by depth layer in FS and BS, indicating that structures of bacterial communities would diff er with increasing water depth in straits. Additionally, the cluster relationships among samples in abundant and rare communities were both similar to those in entire communities. However, the dissimilarities among samples showed a descending order as rare communities, entire communities and abundant communities. Network analysis indicated that the BS network was obviously more complex than the FS network. Filamentous bacteria Desulfobulbaceae exhibited high degree values in BS but not in FS, indicating key roles of Desulfobulbaceae in the BS. Our study provides different and common evidences for understanding microbial ecology in coastal shallow and oceanic deep straits.
基金Supported by Project of Nanping Tobacco Monopoly Bureau(NYK2012-14-3)
文摘In this study, the effects of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt on soil microbial communities and disease resist- ance of tobacco were investigated by field experiment. The results showed that the incidence of tobacco bacterial wilt in bio-organic fertilizer treatments (T3 and T4) decreased remarkably among four treatments in the field. Compared with the local conventional fertilization group, the incidence of tobacco bacterial wilt was re- duced by 21.9% and 25.0% in T3 and T4, respectively ; the yield of flue-cured tobacco was improved by 5.7% and 5.3%, respectively ; the proportion of mid- high grade tobacco leaves increased by 2.3% and 2.6%, respectively. After application of bio-organie fertilizer with antagonistic bacteria against tobacco bacterial wilt, rhizosphere soil microbial communities exhibited vast amount and abundant species ; the amount of rhizosphere soil bacteria of infected tobacco plants was im- proved by 218.5% with fewer species. It could be concluded that the application of bio-organic fertilizer with antagonistic bacteria against tobacco bacterial wilt could improve the ecological environment of tobacco field, inhibit the growth of pathogenic bacteria, decrease the incidence of tobacco bacterial wilt, and enhance the quality of flue-cured tobacco. This study laid the foundation for further ecological prevention and control of soil-borne diseases of tobacco.
文摘Soft rot disease causes heavy loss in konjac production every year, which caused by the genus Pectobacterium has been recognized as a major reason why konjac industry has not boomed in worldwide. However, intercropping with economically important trees can effectively control affect soft rot disease epidemics. Consequently, we conducted a rhizosphere bacterial diversity study to assess how intercropping affects soft rot disease using next-generation DNA sequencing. The results demonstrate the Shannon diversity index and Chao 1 index for soil bacteria were relatively steady under intercropping conditions, but changed greatly for the konjac monocrop with the increase in the number of cropping years. Of the 44 bacterial genera with relative abundance ratios of >0.3%, 11 were significantly affected by the duration of continuous cropping and the cultivation mode. Luteolibacter and Bacteroides showed highly significant differences between the monocrop and the intercrop for three continuous years. Pseudomonas was significantly affected by the different cultivation modes, while Myroides was significantly affected by planting age. Intercropping altered the structure and composition of the soil bacterial community, which led to a relative balance of beneficial bacteria, and the relative balance of beneficial bacteria is helpful to reduce the incidence of soft rot.
基金supported by the National Natural Science Foundation of China(32071751)the National key research and development program(2021YFD220120102)+1 种基金the Natural Science Foundation of Shandong Province(ZR2018ZC08N3)the funds of the Shandong Double Tops Program(Grant No.SYL2017XTTD03).
文摘Sexual dimorphism of plants shapes the diff erent morphology and physiology between males and females.However,it is still unclear whether it infl uences belowground ecological processes.In this study,rhizosphere soil of male and female Populus deltoides and bulk soil were collected from an 18-year plantation(male and female trees mix-planted)and grouped into three soil compartments.Soil carbon(C),nitrogen(N)and phosphorus(P)levels were determined,and soil bacterial communities were analyzed by high-throughput sequencing.The results showed the less total carbon and total organic carbon,the more nutrients(available phosphorus,nitrate nitrogen and ammonium nitrogen)available in the rhizosphere soils of female poplars than soils of males.However,α-diversity indices of the rhizosphere bacterial communities under male plants were signifi-cantly higher.Principal component analysis showed that the bacterial communities were signifi cantly diff erent between the male and female soil compartments.Further,the bacterial co-occurrence network in soil under male trees had more nodes and edges than under females.BugBase analysis showed the more functional bacteria taxa related to biofi lm formation and antioxidation under males.The results indicate that soils under male poplars had more diverse and more complex co-occurrence networks of the rhizosphere bacterial community than soils under female trees,implying that male poplars might have better environmental adaptability.The study provides insight into the diff erent soil-microbe interactions of dioecious plants.More details about the infl uencing mechanism of sexual dimorphism on rhizosphere soil bacterial communities need to be further studied.
基金Supported by the National Key R&D Program of China(No.2017YFD0701700)National Natural Science Foundation of China(Nos.31472312,31672673)。
文摘Bacteria play a major role in metabolizing ammonia and other metabolites in recirculating aquaculture systems(RASs).To characterize and compare the bacterial communities in the biofilters of two full-scale RASs for the culture of puffer fish,Takifugu rubripes,at different ages and densities were studied.In overall,47807 optimized reads of the 16 S rRNA gene with V4-V5 region were obtained from four biofilm samples collected after biofilm maturation.At 97%cut-off level,these sequences were clustered into 500 operational taxonomic units,and were classified into 19 bacterial phyla and 138 genera.At the phylum level,Proteobacteria and Bacteroidetes were the most abundant,followed by Nitrospirae and Planctomycetes.At the genus level,Colwellia,Marinifilum,Oceanospirillum,Lutibacter,Winogradskyella,Pseudoalteromonas,Arcobacter,and Phaeobacter were the top members.Nitrosomonas and Nitrospira were main ammonia-and nitrite-oxidizing bacteria.Differences in bacterial communities at different sampling dates and similarities of both biofilters were revealed in the Venn diagram and cluster analysis.Maintaining a good water quality and health offarmed fish in RASs depended on the correct management of the bacterial communities.This study provides more accurate information on the bacterial communities associated with the bifilters of both RASs.
基金financially supported by National Natural Science Foundation of China (Grant no. 41776198)Basic Scientific Fund for National Public Research Institutes of China (Grant no. GY0219Q10)the Key Lab of Marine Bioactive Substances of the First Institute of Oceanography, SOA (Grant no. MBSMAT-2017-01)
文摘The relatively simple vegetation of the Arctic tundra provides an ideal site in which to study the relationships between plants, bacterial communities and soil chemistry. Here, results of 16S rRNA gene sequencing of secondary Arctic brown soils collected from underneath colonies of Dryasoctopetala, Luzulaconfusa and Bistortavivipara in the Arctic tundra near Ny-Alesund, Svalbard, Norway, reveal significant differences in bacterial communities related to soil environmental properties. Redundancy analysis shows that all measured geochemical factors were significant in structuring microbiomes, with strong correlations related to soil pH and organic matter contents. Vegetation is likely to affect the physical and chemical properties of the soil, which in turn affects the bacterial community and composition of the soil.
基金supported by the Major Research Plan of Tianjin (No.16YFXTSF00460)the National Natural Science Foundation of China (No.21878220)
文摘Diversity in bacterial communities was investigated along a petroleum hydrocarbon content gradient(0-0.4043 g/g)in surface(5-10 cm)and subsurface(35-40 cm)petroleum-contaminated soil samples from the Dagang Oilfield,China.Using 16S rRNA Illumina high-throughput sequencing technology and several statistical methods,the bacterial diversity of the soil was studied.Subsequently,the environmental parameters were measured to analyze its relationship with the community variation.Nonmetric multidimensional scaling and analysis of similarities indicated a significant difference in the structure of the bacterial community between the nonpetroleum-contaminated surface and subsurface soils,but no differences were observed in different depths of petroleum-contaminated soil.Meanwhile,many significant correlations were obtained between diversity in soil bacterial community and physicochemical properties.Total petroleum hydrocarbon,total organic carbon,and total nitrogen were the three important factors that had the greatest impacts on the bacterial community distribution in the long-term petroleum-contaminated soils.Our research has provided references for the bacterial community distribution along a petroleum gradient in both surface and subsurface petroleum-contaminated soils of oilfield areas.
基金financially supported by State Environmental Protection Key Laboratory of Microorganism Application and Risk Control(No.MARC2012D010)National Water Special Program(No.2012ZX07404-002)International Science&Technology Cooperation Program of China(No.2010DFA91830)
文摘This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquobocterium might contribute to the formation of colored water.
基金Supported by the NSFC-Shandong Joint Fund for Marine Ecology and Environmental Sciences(No.U1606404)the Fundamental Research Funds for the Central Universities(No.201562018)the Foundation of the Key Laboratory of Marine Spill Oil Identification and Damage Assessment Technology(No.201108)
文摘Marine bacteria have recently been identified as a potent solution for petroleum hydrocarbon degradation in response to hazardous oceanic oil spills. In this study, a mesocosm experiment simulating a petroleum spill event was performed to investigate changes in the abundance, structure, and productivity of bacterial communities in response to oil pollution. Cultured heterotrophic bacteria and total bacteria showed a consistent trend involving an immediate decrease in abundance, followed by a slight increase, and a steady low-level thereafter. However, the changing trend of bacterial productivity based on bacterial biomass and bacterial volume showed the opposite trend. In addition, the density of oil-degrading bacteria increased initially, then subsequently declined. The change in the bacterial community structure at day 0 and day 28 were also analyzed by amplified ribosomal DNA restriction analysis (ARDRA), which indicated that the species diversity of the bacterial community changed greatly after oil pollution. Alphaproteobacteria (40.98%) replaced Epsilonproteobacteria (51.10%) as the most abundant class, and Gammaproteobacteria (38.80%) became the second most dominant class in the whole bacterial community. The bacterial communities in oil-contaminated seawater (32 genera) became much more complex than those found in the natural seawater sample (16 genera). The proportion of petroleum-degrading bacteria in the oil-contaminated seawater also increased. In this study, culture-dependent and culture-independent approaches were combined to elucidate changes in both bacterial productivity and community structure. These findings will contribute to a better understanding of the role that bacteria play in material cycling and degradation in response to oil pollution.
基金Supported by the Hundred Talents Program of the Chinese Academy of Sciences awarded to Dr.Xiaoke HUthe Key Research Program of Chinese Academy of Sciences(No.KZZD-EW-14)+1 种基金the Science and Technology Program of Shandong Province(No.2013GHY11534)the National Natural Science Foundation of China(Nos.41376138,41576165)
文摘Bioremediation, is an effective and environment-friendly method of cleaning up crude oil pollution after an oil spill. However, the in situ bioremediation of crude oil is usually inhibited by deficiency of inorganic nutrients. To understand the effects of nutrient addition on the bioremediation of crude oil and the succession of bacterial communities during process of bioremediation, microcosms containing oilcontaminated sediments were constructed and biodegradation of crude oil was assessed based on the depletion of different ingredients. We used two culture-independent methods, denaturing gradient gel electrophoresis and a 16 S rRNA gene based clone library, to analyze the succession of bacterial communities. The results suggested n-alkanes were degraded after 30 days and that nutrient amendments significantly improved the efficiency of their biodegradation. Moreover, oil contamination and nutrient amendments could dramatically change bacterial community structures. Lower diversity was detected after being contaminated with oil. For instance, bacterial clones affiliated with the phylum Armatimonadetes, Firmicutes, Gemmatimonadetes, and Planctomycetes and the class Deltaproteobacteria and Epsilonproteobacteria could not be identified after 30 days of incubation with crude oil. However, "professional hydrocarbonocastic bacteria" became abundant in samples treated with oil during the bioremediation period, while these clones were almost completely absent from the control plots. Interestingly, bioinformatics analysis showed that even when dramatic differences in oil biodegradation efficiency were observed, bacterial communities in the plots with nutrient amendments were not significantly different from those in plots treated with oil alone. These findings indicated that nutrient amendments could stimulate the process of biodegradation but had less impact on bacterial communities. Overall, nutrient amendments might be able to stimulate the growth of n-alkane degrading bacteria.
基金The National Key Research and Development Program of China under contract No.2020 YFA0607600。
文摘Marine spatial planning(MSP)is designed to divide the sea area into different types of functional zones,to implement corresponding development activities.However,the long-term impacts of anthropogenic activities associated with MSP practice on the marine microbial biosphere are still unclear.Yalu River Estuary,a coastal region in northeast of China,has been divided into fishery&agricultural(F&A)zone,shipping&port(S&P)zone and marine protected area(MPA)zone by a local MSP guideline that has been run for decades.To examine the effects of long-term executed MSP,benthic bacterial communities from different MSP zones were obtained and compared in this study.The results revealed significant differences in the bacterial community structure and predict functions among different zones.Bacterial genera enriched in different zones were identified,including SBR1031 in MPA,Woeseia and Sva0996 in S&P,and Halioglobus in F&A.In addition,correlations between some bacterial genera and sediment pollutants were uncovered.Furthermore,bacteria related to sulphide production were more abundant in the F&A zone,which was according to the accumulation of sulphides in this area.Moreover,bacteria associated with chemoheterotrophy and fermentation were more predominant in the S&P zone,consistent with high levels of organic matter and petroleum caused by shipping.Our findings indicated benthic bacterial communities could bring to light the anthropogenic activity footprints by different activities induced by long-term MSP practice.