Quasi-bound state in the continuum(QBIC)resonance is gradually attracting attention and being applied in Goos-Hänchen(GH)shift enhancement due to its high quality(Q)factor and superior optical confinement.Current...Quasi-bound state in the continuum(QBIC)resonance is gradually attracting attention and being applied in Goos-Hänchen(GH)shift enhancement due to its high quality(Q)factor and superior optical confinement.Currently,symmetry-protected QBIC resonance is often achieved by breaking the geometric symmetry,but few cases are achieved by breaking the material symmetry.This paper proposes a dielectric compound grating to achieve a high Q factor and high-reflection symmetry-protectede QBIC resonance based on material asymmetry.Theoretical calculations show that the symmetry-protected QBIC resonance achieved by material asymmetry can significantly increase the GH shift up to-980 times the resonance wavelength,and the maximum GH shift is located at the reflection peak with unity reflectance.This paper provides a theoretical basis for designing and fabricating high-performance GH shift tunable metasurfaces/dielectric gratings in the future.展开更多
Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinflu...Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinfluencing factors on VOCs release have always been the basic issue of asphalt VOCs emission reduction research.Researchers have proposed a variety of asphalt VOCs characterization methodologies, which also have mutuallyirreplaceable characteristics. Asphalt VOCs volatilization is affected by many factors. In this study, asphalt VOCscharacterization methodologies were summarized, including their advantages, disadvantages, characteristics andapplicable requirements. Subsequently, the influencing factors of VOCs release, such as asphalt types and environment conditions, are summarized to provide theoretical support for the emission reduction research. Theclassification and mechanism of newly-development asphalt VOCs emission reduction materials are reviewed. Thereduction efficiencies are also compared to select better materials and put forward the improvement objective ofnew materials and new processes. In addition, the prospects about development of VOCs release mechanism ofasphalt materials during the full life cycle and feasibility research of high-efficiency composite emission reductionmaterials in the future were put forward.展开更多
The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that t...The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.展开更多
The mechanism of antithrombotic of Dahuangzhechong Fang separated and purified by Ti-Al intermetallic compound porous material (TAICPM) was researched. Dahuangzhechong Fang, which was isolated and screened by TAICPM, ...The mechanism of antithrombotic of Dahuangzhechong Fang separated and purified by Ti-Al intermetallic compound porous material (TAICPM) was researched. Dahuangzhechong Fang, which was isolated and screened by TAICPM, was used to oral rats. At the end of study, their blood and thrombus were collected. The results show that TAICPM with the pore size of 1-5 μm can screen Dahuangzhechong Fang well. Dahuangzhechong Fang can increase 6-keto-PGF1α, lower content of TXD2 and platelet. Dahuangzhechong Fang has good effect to resist arterial thrombosis.展开更多
Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants ...Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants (including effective elastic modulus, effective shear elastic modulus and effective Poisson ratio) were derived by the energy method for this porous material. Calculation results show that both the effective elastic modulus and effective shear elastic modulus increase with the increase of the relative density while the effective Poisson ratio decreases. Compared with the currently-existing hexagonal honeycomb model and micromechanics model of composite materials, the micromechanics model of heterogeneous Plateau porous structure in this study is more suitable for characterizing the medium-density porous material and more accurate for predicting the effective elastic constants of the medium-density porous material. Moreover, the obtained explicit expressions of the effective elastic constants in term of the relative density rather than the microstructural parameters for the uniform and regular Plateau porous structure are more convenient to engineering application.展开更多
Adsorption and the combination of adsorption and photocatalysis are prospective strategies for treating lowconcentrationvolatile organic compounds (VOCs). Behind the adsorption technology of VOC treatments are carbon-...Adsorption and the combination of adsorption and photocatalysis are prospective strategies for treating lowconcentrationvolatile organic compounds (VOCs). Behind the adsorption technology of VOC treatments are carbon-basedmaterials with large surface areas and high VOC uptake. This review summarizes the research progress in carbon-basedadsorbents and adsorbent-photocatalysts for VOC removal. Firstly, the VOC adsorption performances of various carbonmaterials, including activated carbon, activated carbon fiber, biochar, graphene and its derivatives, and carbon nanotubes,are summarized, and the adsorption mechanism of VOCs on carbon materials is analyzed. Then, the VOC adsorptionphotocatalyticproperties of composites comprised of different carbon materials and photocatalysts are presented. Finally,perspectives on the adsorption and adsorption-photocatalysis of VOCs via carbon materials are proposed. This reviewprovides an optimal reference for the research and development of adsorbents and adsorption-photocatalysts of VOCs.展开更多
Novel pyridine-containing macrocyclic compounds, such as 6,12,19,25-tetramethyl-7,11,20,24-dinitrilo-dibenzo [b,m]1,4,12,15-tetra-azacyclodoc osine (TMCD), were synthesized and used as electron transport layer in or...Novel pyridine-containing macrocyclic compounds, such as 6,12,19,25-tetramethyl-7,11,20,24-dinitrilo-dibenzo [b,m]1,4,12,15-tetra-azacyclodoc osine (TMCD), were synthesized and used as electron transport layer in organic electroluminescent devices. Devices with a structure of glass/indium-tin oxide/arylamine derivative/ tris(quinolinolato)aluminum(Ⅲ) (Alq)/TMCD/LiF/Al exhibited green emission from the Alq layer with external quantum efficiency of 0.84% and luminous efficiency of 1.3 lm/W. The derivatives of TMCD were synthesized and characterized as well. These compounds were also found to be useful as the electron-transporting materials in organic electroluminescent devices.展开更多
The paper studies the dispersion of axisymmetric longitudinal waves in the bi-material compound circular cylinder made of linear viscoelastic materials.The investigations are carried out within the scope of the piecew...The paper studies the dispersion of axisymmetric longitudinal waves in the bi-material compound circular cylinder made of linear viscoelastic materials.The investigations are carried out within the scope of the piecewise homogeneous body model by utilizing the exact equations of linear viscoelasto-dynamics.The corresponding dispersion equation is derived for an arbitrary type of hereditary operator and the algorithm is developed for its numerical solution.Concrete numerical results are obtained for the case where the relations of the constituents of the cylinder are described through fractional exponential operators.The influence of the viscosity of the materials of the compound cylinder on the wave dispersion is studied through the rheological parameters which indicate the characteristic creep time and long-term values of the elastic constants of these materials.Dispersion curves are presented for certain selected dispersive and non-dispersive attenuation cases under various values of the problem parameters and the influence of the aforementioned rheological parameters on these curves is discussed.As a result of the numerical investigations,in particular,it is established that in the case where the rheological parameters of the components of the compound cylinder are the same,the viscosity of the layers’materials causes the axisymmetric wave propagation velocity to decrease.展开更多
Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The...Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The phase transformation and pore formation of porous TiFe2intermetallics were investigated,and its corrosion behavior and hydrogen evolution reaction(HER)performance in alkali solution were studied.Porous TiFe2intermetallics with porosity in the range of 34.4%-56.4%were synthesized by the diffusion reaction of Ti and Fe elements,and the pore formation of porous TiFe2intermetallic compound is the result of a combination of the bridging effect and the Kirkendall effect.The porous TiFe2samples exhibit better corrosion resistance compared with porous 316L stainless steel,which is related to the formation of uniform nanosheets on the surface that hinder further corrosion,and porous TiFe2electrode shows the overpotential of 220.6 and 295.6 mV at 10 and 100 mA·cm-2,suggesting a good catalytic performance.The synthesized porous Fe-based intermetallic has a controllable pore structure as well as excellent corrosion resistance,showing its potential in the field of filtration and separation.展开更多
Chinese top planner-State Development and Reform Commission,has decided to organize and coordinate an implementation of a special project for high tech industrialization of fiber-reinforced compound materials in 2008 ...Chinese top planner-State Development and Reform Commission,has decided to organize and coordinate an implementation of a special project for high tech industrialization of fiber-reinforced compound materials in 2008 up to 2009.The decision has recently been issued in its national circular(doc. 3177,Yr.2007)to call for local enterprises to apply for this special project support.展开更多
The anaerobic digestion of sludge has recently received increased interest because of the potential to transform organic matter into methane‐rich biogas. However, digested sludge, the residue produced in that process...The anaerobic digestion of sludge has recently received increased interest because of the potential to transform organic matter into methane‐rich biogas. However, digested sludge, the residue produced in that process, still contains high levels of heavy metals and other harmful substances that might make traditional disposal difficult. We have devised a facile method of converting digested sludge into a mesoporous material that acts as an effective and stable heterogeneous catalyst for the photo‐Fenton reaction. A comparison of the removal of rhodamine B under different conditions showed that FAS‐1‐350, which was synthesized by mixing the digested sludge with a 1 mol/L(NH4)2Fe(SO4)2 solution followed by calcination at 350 °C, exhibited the best catalytic activity owing to its faster reaction rate and lower degree of Fe leaching. The results indicate that Fe^(2+)‐loaded catalysts have significant potential to act as stable and efficient heterogeneous promoters for the photo‐Fenton reaction, with better performance than Fe^3+‐loaded catalysts because the Fe(II)/Fe(III)compounds formed in the calcination process are necessary to sustain the Fenton reaction. This protocol provides an alternative, environmentally friendly method of reusing digested sludge and demonstrates an easily synthesized mesoporous material that effectively degrades azo dyes.展开更多
Use of nonlinearconductive SiC/silicone rubber(SR)field grading material(FGM)can improve the local field concentration of composite insulators.Adding large volume fraction and large-size SiC particles(SiCp)into SR can...Use of nonlinearconductive SiC/silicone rubber(SR)field grading material(FGM)can improve the local field concentration of composite insulators.Adding large volume fraction and large-size SiC particles(SiCp)into SR can obtain a good field grading effect,but it is accompanied by the deterioration of mechanical properties.Compounding SiC with different shapes can solve this contradiction.By incorporating one-dimensional SiC whiskers(SiCw)to synergize with granular SiCp,SiC/SR FGM with better field-dependent conductivity,mechanical properties and thermal conductivity than large-size SiCp and large volume fraction filling case can be obtained by using smaller size SiCp and lower filling contents.The simulations of 500 kv line insulators show that the modified SiC/SR FGM can reduce the maximum field strength along the insulator surface and at sheath-core rod interfaces by 55%and 71.4%,respectively.The combined application of FGM and grading ring can achieve a complementary effect.Using FGM to partially replace the role of the grading rings,the field strength indicators can still meet the operational requirements after the tube radius and shielding depth of the grading rings at both ends are reduced by 36.2%and 40%separately,which is a benefit to alleviating the problems of high weight and large volume faced by traditional field grading methods.展开更多
Thermodynamic models for molecular-beam epitaxy(MBE) growth of ternary Ⅲ-Ⅴ semiconductor materials are proposed.These models are in agreement with our experimental materials InGaP/GaAs and InGaAs/InP,and reported ...Thermodynamic models for molecular-beam epitaxy(MBE) growth of ternary Ⅲ-Ⅴ semiconductor materials are proposed.These models are in agreement with our experimental materials InGaP/GaAs and InGaAs/InP,and reported GaAsP/GaAs and InAsP/InP in thermodynamic growth.The lattice strain energy △G and thermal decomposition sensitive to growth temperature are demonstrated in the models simultaneously.△G is the function of the alloy composition,which is affected by flux ratio and growth temperature directly.The calculation results reveal that flux ratio and growth temperature mainly influence the growth process.Thermodynamic model of quaternary InGaAsP/GaAs semiconductor material is discussed also.展开更多
Cu/Al bar clad material was fabricated by a drawing process and a subsequent heat treatment.During these processes,intermetallic compounds have been formed at the interface of Cu/Al and have affected its bonding prope...Cu/Al bar clad material was fabricated by a drawing process and a subsequent heat treatment.During these processes,intermetallic compounds have been formed at the interface of Cu/Al and have affected its bonding property.Microstructures of Cu/Al interfaces were observed by OM,SEM and EDX Analyser in order to investigate the bonding properties of the material.According to the microstructure a series of diffusion layers were observed at the interface and the thicknesses of diffusion layers have increased with aging time as a result of the diffusion bonding.The interfaces were composed of 3-ply diffusion layers and their compositions were changed with aging time at 400 °C.These compositional compounds were revealed to be η2,(θ+η2),(α+θ) intermetallic phases.It is evident from V-notch impact tests that the growth of the brittle diffusion layers with the increasing aging time directly influenced delamination distance between the Cu sleeve and the Al core.It is suggested that the proper holding time at 400 °C for aging as post heat treatment of a drawn Cu/Al bar clad material would be within 1 h.展开更多
Objectives:The chemical constituents of Poria cocos grown with different substrates vary significantly;thus,identifying and comparing their biomarkers are important.Materials and Methods:Herein,the chemical constituen...Objectives:The chemical constituents of Poria cocos grown with different substrates vary significantly;thus,identifying and comparing their biomarkers are important.Materials and Methods:Herein,the chemical constituents of Poria cocos obtained with five different substrates were assessed using gas chromatography–ion mobility spectrometry(GC-IMS),high-performance liquid chromatography and multivariate statistical analysis.Results:The content of moisture,ash,alcohol-soluble matter,and heavy metals,except for those of the miscellaneous wood Poria cocos,conform to the specifications defined in the Chinese Pharmacopoeia(Edition 2020),and the polysaccharide contents are all greater than 57%.Conclusions:Based on GC-IMS and the established fingerprints,87 compounds were detected,70 of which were identified in each group.Multivariate statistical analysis revealed seven compounds(two esters,three alcohols,and two aldehydes),which could be considered as potential marker compounds for discrimination.展开更多
In this short review, excerpts from the literature of azo-bridged triazoles(mainly 1,2,4-triazoles), some of their derivatives(chloromethyl,dinitro and trinitro pyrazole substituted ones, etc.) and some of their salts...In this short review, excerpts from the literature of azo-bridged triazoles(mainly 1,2,4-triazoles), some of their derivatives(chloromethyl,dinitro and trinitro pyrazole substituted ones, etc.) and some of their salts, have been presented focusing on the most recent investigations. These classes of compounds, known as high nitrogen compounds, are generally high energy density materials. Therefore, if available some of their ballistic properties were included.展开更多
Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and m...Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and magnesium were placed in the advancing side and retreating side respectively and the tool was placed 1 mm off the weld centerline into the aluminum side. In order to understand the material flow during FSW, steel shots were implanted as indexes into the welding path. After welding, using X-ray images, secondary positions of the steel shots were evaluated. It was revealed that steel shots implanted in advancing side were penetrated from the advancing side into the retreating side, whereas the shots implanted in the retreating side remained in the retreating side, without penetrating into the advancing side. The welded specimens were also heat treated. The effects of heat treatment on the mechanical properties of the welds and the formation of new intermetallic layers were investigated. Two intermetallic compounds, Al3Mg2 and Al12Mg17, were formed sequentially at Al6013/Mg interface.展开更多
In recent years,rechargeable aqueous zinc ion batteries(ZIBs),as emerging energy storage devices,stand out from numerous metal ion batteries.Due to the advantages of low cost,environmentally friendly characteristic an...In recent years,rechargeable aqueous zinc ion batteries(ZIBs),as emerging energy storage devices,stand out from numerous metal ion batteries.Due to the advantages of low cost,environmentally friendly characteristic and safety,ZIBs can be considered as alternatives to lithium-ion batteries(LIBs).Vanadiumbased compounds with various structures and large layer spacings are considered as suitable cathode candidates for ZIBs.In this review,the recent research advances of vanadium-based electrode materials are systematically summarized.The electrode design strategy,electrochemical performances and energy storage mechanisms are emphasized.Finally,we point out the limitation of vanadium-based materials at present and the future prospect.展开更多
Potassium-ion batteries(PIBs)represent one of the most promising alternatives to lithium-ion batteries(LIBs),owing to their exceptional attributes such as high voltages,potent power capabilities,and cost-effectiveness...Potassium-ion batteries(PIBs)represent one of the most promising alternatives to lithium-ion batteries(LIBs),owing to their exceptional attributes such as high voltages,potent power capabilities,and cost-effectiveness.Nonetheless,challenges arise from the sluggish kinetics and significant volume expansion observed during the insertion/extraction of large-radii potassium ions,leading to subpar rate performance and considerable capacity degradation in potassium-ion batteries.Consequently,it becomes imperative to explore advanced anode materials exhibiting high electrochemical activity and robust structural stability.In this regard,the present review focuses on recent progress in metal-organic compounds(MOCs)as anode materials for potassium-ion batteries,systematically discussing their outstanding merits from the perspective of metal speciation.Additionally,the principal mechanism of K ion storage within relevant MOCs is presented.Furthermore,a comprehensive summary of existing drawbacks that hinder the broader application of MOCs-based materials is provided,along with proposed guidelines and strategies for addressing the inferior performance characteristics.This review serves to illuminate the development of MOCs-based anode materials for potassium-ion batteries and offers a valuable reference for future research endeavors.展开更多
Na0.44MnO2 nanorods have been prepared by a hydrothermal method.The experimental parameters have been systematically investigated and optimized.The results show that Na0.44MnO2 nanorods obtained via the hydrothermal t...Na0.44MnO2 nanorods have been prepared by a hydrothermal method.The experimental parameters have been systematically investigated and optimized.The results show that Na0.44MnO2 nanorods obtained via the hydrothermal treatment at 200℃for 16 h show the best electrochemical properties,which deliver the high initial discharge capacity of 110.7 mA·h/g at 50 mA/g in potential window 2.0-4.0 V.To further improve their electrochemical properties,a ball milling process with graphene has been carried out to obtain Na0.44MnO2/graphene composite.The initial discharge capacity of Na0.44MnO2/graphene composite is 106.9 mA·h/g at a current density of 50 mA/g.After 100 cycles,the residual discharge capacity is 91.8 mA·h/g and the capacity retention rate is 85.9%,which is much higher than that of pristine Na0.44MnO2 nanorods(74.7%)at the same condition.What is more,when the current density reaches 500 and 1000 mA/g,the corresponding discharge capacities of Na0.44MnO2/graphene composite are about 89 and 78 mA·h/g,respectively,indicating outstanding rate capability.展开更多
基金Project supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ23F040001)the National Natural Science Foundation of China(Grant No.12204446)+1 种基金the Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGC22E050006)the Quzhou Science and Technology Project of China(Grant No.2022K104).
文摘Quasi-bound state in the continuum(QBIC)resonance is gradually attracting attention and being applied in Goos-Hänchen(GH)shift enhancement due to its high quality(Q)factor and superior optical confinement.Currently,symmetry-protected QBIC resonance is often achieved by breaking the geometric symmetry,but few cases are achieved by breaking the material symmetry.This paper proposes a dielectric compound grating to achieve a high Q factor and high-reflection symmetry-protectede QBIC resonance based on material asymmetry.Theoretical calculations show that the symmetry-protected QBIC resonance achieved by material asymmetry can significantly increase the GH shift up to-980 times the resonance wavelength,and the maximum GH shift is located at the reflection peak with unity reflectance.This paper provides a theoretical basis for designing and fabricating high-performance GH shift tunable metasurfaces/dielectric gratings in the future.
基金the National Natural Science Foundation of China(52378460 and 51878526)the Program Fund of Non-metallic Excellent and Innovation Center for Building Materials(Grants 2024TDA-3)Knowledge Innovation Program of Wuhan-Basic Research from the Wuhan Science and Technology Bureau(2022020801010176)are gratefully acknowledged.
文摘Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinfluencing factors on VOCs release have always been the basic issue of asphalt VOCs emission reduction research.Researchers have proposed a variety of asphalt VOCs characterization methodologies, which also have mutuallyirreplaceable characteristics. Asphalt VOCs volatilization is affected by many factors. In this study, asphalt VOCscharacterization methodologies were summarized, including their advantages, disadvantages, characteristics andapplicable requirements. Subsequently, the influencing factors of VOCs release, such as asphalt types and environment conditions, are summarized to provide theoretical support for the emission reduction research. Theclassification and mechanism of newly-development asphalt VOCs emission reduction materials are reviewed. Thereduction efficiencies are also compared to select better materials and put forward the improvement objective ofnew materials and new processes. In addition, the prospects about development of VOCs release mechanism ofasphalt materials during the full life cycle and feasibility research of high-efficiency composite emission reductionmaterials in the future were put forward.
基金Project(2011DFR50630)sponsored by the International S&T Cooperation of China
文摘The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.
基金Project (2010FA32370) supported by The Ministry of Science and Technology of ChinaProject (2008WK3002) supported by Hunan Provincial Science and Technology DepartmentProject (20060390891) supported by the Postdoctoral Science Foundation of China
文摘The mechanism of antithrombotic of Dahuangzhechong Fang separated and purified by Ti-Al intermetallic compound porous material (TAICPM) was researched. Dahuangzhechong Fang, which was isolated and screened by TAICPM, was used to oral rats. At the end of study, their blood and thrombus were collected. The results show that TAICPM with the pore size of 1-5 μm can screen Dahuangzhechong Fang well. Dahuangzhechong Fang can increase 6-keto-PGF1α, lower content of TXD2 and platelet. Dahuangzhechong Fang has good effect to resist arterial thrombosis.
基金Project(50825102) supported by the National Natural Science Funds for Distinguished Young Scholar,ChinaProject(2009CB623406) supported by the National Basic Research Program of China
文摘Based on microstructure analysis of the new Ti-A1 intermetallic compound porous material, a micromechanics model of heterogeneous Plateau porous structure was established and calculation formulas of elastic constants (including effective elastic modulus, effective shear elastic modulus and effective Poisson ratio) were derived by the energy method for this porous material. Calculation results show that both the effective elastic modulus and effective shear elastic modulus increase with the increase of the relative density while the effective Poisson ratio decreases. Compared with the currently-existing hexagonal honeycomb model and micromechanics model of composite materials, the micromechanics model of heterogeneous Plateau porous structure in this study is more suitable for characterizing the medium-density porous material and more accurate for predicting the effective elastic constants of the medium-density porous material. Moreover, the obtained explicit expressions of the effective elastic constants in term of the relative density rather than the microstructural parameters for the uniform and regular Plateau porous structure are more convenient to engineering application.
文摘Adsorption and the combination of adsorption and photocatalysis are prospective strategies for treating lowconcentrationvolatile organic compounds (VOCs). Behind the adsorption technology of VOC treatments are carbon-basedmaterials with large surface areas and high VOC uptake. This review summarizes the research progress in carbon-basedadsorbents and adsorbent-photocatalysts for VOC removal. Firstly, the VOC adsorption performances of various carbonmaterials, including activated carbon, activated carbon fiber, biochar, graphene and its derivatives, and carbon nanotubes,are summarized, and the adsorption mechanism of VOCs on carbon materials is analyzed. Then, the VOC adsorptionphotocatalyticproperties of composites comprised of different carbon materials and photocatalysts are presented. Finally,perspectives on the adsorption and adsorption-photocatalysis of VOCs via carbon materials are proposed. This reviewprovides an optimal reference for the research and development of adsorbents and adsorption-photocatalysts of VOCs.
基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(No.2005383).
文摘Novel pyridine-containing macrocyclic compounds, such as 6,12,19,25-tetramethyl-7,11,20,24-dinitrilo-dibenzo [b,m]1,4,12,15-tetra-azacyclodoc osine (TMCD), were synthesized and used as electron transport layer in organic electroluminescent devices. Devices with a structure of glass/indium-tin oxide/arylamine derivative/ tris(quinolinolato)aluminum(Ⅲ) (Alq)/TMCD/LiF/Al exhibited green emission from the Alq layer with external quantum efficiency of 0.84% and luminous efficiency of 1.3 lm/W. The derivatives of TMCD were synthesized and characterized as well. These compounds were also found to be useful as the electron-transporting materials in organic electroluminescent devices.
文摘The paper studies the dispersion of axisymmetric longitudinal waves in the bi-material compound circular cylinder made of linear viscoelastic materials.The investigations are carried out within the scope of the piecewise homogeneous body model by utilizing the exact equations of linear viscoelasto-dynamics.The corresponding dispersion equation is derived for an arbitrary type of hereditary operator and the algorithm is developed for its numerical solution.Concrete numerical results are obtained for the case where the relations of the constituents of the cylinder are described through fractional exponential operators.The influence of the viscosity of the materials of the compound cylinder on the wave dispersion is studied through the rheological parameters which indicate the characteristic creep time and long-term values of the elastic constants of these materials.Dispersion curves are presented for certain selected dispersive and non-dispersive attenuation cases under various values of the problem parameters and the influence of the aforementioned rheological parameters on these curves is discussed.As a result of the numerical investigations,in particular,it is established that in the case where the rheological parameters of the components of the compound cylinder are the same,the viscosity of the layers’materials causes the axisymmetric wave propagation velocity to decrease.
基金financially supported by the National Natural Science Foundation of China(No.51971251)。
文摘Porous intermetallics show potential in the field of filtration and separation as well as in the field of catalysis.Herein,porous Ti Fe2intermetallics were fabricated by the reactive synthesis of elemental powders.The phase transformation and pore formation of porous TiFe2intermetallics were investigated,and its corrosion behavior and hydrogen evolution reaction(HER)performance in alkali solution were studied.Porous TiFe2intermetallics with porosity in the range of 34.4%-56.4%were synthesized by the diffusion reaction of Ti and Fe elements,and the pore formation of porous TiFe2intermetallic compound is the result of a combination of the bridging effect and the Kirkendall effect.The porous TiFe2samples exhibit better corrosion resistance compared with porous 316L stainless steel,which is related to the formation of uniform nanosheets on the surface that hinder further corrosion,and porous TiFe2electrode shows the overpotential of 220.6 and 295.6 mV at 10 and 100 mA·cm-2,suggesting a good catalytic performance.The synthesized porous Fe-based intermetallic has a controllable pore structure as well as excellent corrosion resistance,showing its potential in the field of filtration and separation.
文摘Chinese top planner-State Development and Reform Commission,has decided to organize and coordinate an implementation of a special project for high tech industrialization of fiber-reinforced compound materials in 2008 up to 2009.The decision has recently been issued in its national circular(doc. 3177,Yr.2007)to call for local enterprises to apply for this special project support.
基金supported by the National Key Technology Research&Development Program of China(2014BAL02B02)the National Natural Science Foundation of China(51578397)~~
文摘The anaerobic digestion of sludge has recently received increased interest because of the potential to transform organic matter into methane‐rich biogas. However, digested sludge, the residue produced in that process, still contains high levels of heavy metals and other harmful substances that might make traditional disposal difficult. We have devised a facile method of converting digested sludge into a mesoporous material that acts as an effective and stable heterogeneous catalyst for the photo‐Fenton reaction. A comparison of the removal of rhodamine B under different conditions showed that FAS‐1‐350, which was synthesized by mixing the digested sludge with a 1 mol/L(NH4)2Fe(SO4)2 solution followed by calcination at 350 °C, exhibited the best catalytic activity owing to its faster reaction rate and lower degree of Fe leaching. The results indicate that Fe^(2+)‐loaded catalysts have significant potential to act as stable and efficient heterogeneous promoters for the photo‐Fenton reaction, with better performance than Fe^3+‐loaded catalysts because the Fe(II)/Fe(III)compounds formed in the calcination process are necessary to sustain the Fenton reaction. This protocol provides an alternative, environmentally friendly method of reusing digested sludge and demonstrates an easily synthesized mesoporous material that effectively degrades azo dyes.
基金supported by Science and Technology Project of State Grid Corporation of China(7000-202158440A-0-0-00)。
文摘Use of nonlinearconductive SiC/silicone rubber(SR)field grading material(FGM)can improve the local field concentration of composite insulators.Adding large volume fraction and large-size SiC particles(SiCp)into SR can obtain a good field grading effect,but it is accompanied by the deterioration of mechanical properties.Compounding SiC with different shapes can solve this contradiction.By incorporating one-dimensional SiC whiskers(SiCw)to synergize with granular SiCp,SiC/SR FGM with better field-dependent conductivity,mechanical properties and thermal conductivity than large-size SiCp and large volume fraction filling case can be obtained by using smaller size SiCp and lower filling contents.The simulations of 500 kv line insulators show that the modified SiC/SR FGM can reduce the maximum field strength along the insulator surface and at sheath-core rod interfaces by 55%and 71.4%,respectively.The combined application of FGM and grading ring can achieve a complementary effect.Using FGM to partially replace the role of the grading rings,the field strength indicators can still meet the operational requirements after the tube radius and shielding depth of the grading rings at both ends are reduced by 36.2%and 40%separately,which is a benefit to alleviating the problems of high weight and large volume faced by traditional field grading methods.
基金Projects(06YFJZJC01100,08JCYBJC14800)supported by Applied Basic Study Foundation of Tianjin,ChinaProject(2006AA03Z413)supported by the Hi-tech Research and Development Program of China
文摘Thermodynamic models for molecular-beam epitaxy(MBE) growth of ternary Ⅲ-Ⅴ semiconductor materials are proposed.These models are in agreement with our experimental materials InGaP/GaAs and InGaAs/InP,and reported GaAsP/GaAs and InAsP/InP in thermodynamic growth.The lattice strain energy △G and thermal decomposition sensitive to growth temperature are demonstrated in the models simultaneously.△G is the function of the alloy composition,which is affected by flux ratio and growth temperature directly.The calculation results reveal that flux ratio and growth temperature mainly influence the growth process.Thermodynamic model of quaternary InGaAsP/GaAs semiconductor material is discussed also.
基金Project supported by the Fundamental Materials Development funded by the Korean Ministry of Knowledge Economy
文摘Cu/Al bar clad material was fabricated by a drawing process and a subsequent heat treatment.During these processes,intermetallic compounds have been formed at the interface of Cu/Al and have affected its bonding property.Microstructures of Cu/Al interfaces were observed by OM,SEM and EDX Analyser in order to investigate the bonding properties of the material.According to the microstructure a series of diffusion layers were observed at the interface and the thicknesses of diffusion layers have increased with aging time as a result of the diffusion bonding.The interfaces were composed of 3-ply diffusion layers and their compositions were changed with aging time at 400 °C.These compositional compounds were revealed to be η2,(θ+η2),(α+θ) intermetallic phases.It is evident from V-notch impact tests that the growth of the brittle diffusion layers with the increasing aging time directly influenced delamination distance between the Cu sleeve and the Al core.It is suggested that the proper holding time at 400 °C for aging as post heat treatment of a drawn Cu/Al bar clad material would be within 1 h.
基金the National Key Research and Development Program of China(No.2023YFD2200903)the World Bank Loans Qiandao Lake and Xin’an River Basin Water Resources and Ecological Protection Projects in Zhejiang(CLJY3),China.
文摘Objectives:The chemical constituents of Poria cocos grown with different substrates vary significantly;thus,identifying and comparing their biomarkers are important.Materials and Methods:Herein,the chemical constituents of Poria cocos obtained with five different substrates were assessed using gas chromatography–ion mobility spectrometry(GC-IMS),high-performance liquid chromatography and multivariate statistical analysis.Results:The content of moisture,ash,alcohol-soluble matter,and heavy metals,except for those of the miscellaneous wood Poria cocos,conform to the specifications defined in the Chinese Pharmacopoeia(Edition 2020),and the polysaccharide contents are all greater than 57%.Conclusions:Based on GC-IMS and the established fingerprints,87 compounds were detected,70 of which were identified in each group.Multivariate statistical analysis revealed seven compounds(two esters,three alcohols,and two aldehydes),which could be considered as potential marker compounds for discrimination.
文摘In this short review, excerpts from the literature of azo-bridged triazoles(mainly 1,2,4-triazoles), some of their derivatives(chloromethyl,dinitro and trinitro pyrazole substituted ones, etc.) and some of their salts, have been presented focusing on the most recent investigations. These classes of compounds, known as high nitrogen compounds, are generally high energy density materials. Therefore, if available some of their ballistic properties were included.
文摘Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and magnesium were placed in the advancing side and retreating side respectively and the tool was placed 1 mm off the weld centerline into the aluminum side. In order to understand the material flow during FSW, steel shots were implanted as indexes into the welding path. After welding, using X-ray images, secondary positions of the steel shots were evaluated. It was revealed that steel shots implanted in advancing side were penetrated from the advancing side into the retreating side, whereas the shots implanted in the retreating side remained in the retreating side, without penetrating into the advancing side. The welded specimens were also heat treated. The effects of heat treatment on the mechanical properties of the welds and the formation of new intermetallic layers were investigated. Two intermetallic compounds, Al3Mg2 and Al12Mg17, were formed sequentially at Al6013/Mg interface.
基金supported by the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2019WNLOKF017)Education Department Funding of Liaoning province(LJGD2019001)Funding of Science and Technology Bureau,Shenyang City(No.RC190138)。
文摘In recent years,rechargeable aqueous zinc ion batteries(ZIBs),as emerging energy storage devices,stand out from numerous metal ion batteries.Due to the advantages of low cost,environmentally friendly characteristic and safety,ZIBs can be considered as alternatives to lithium-ion batteries(LIBs).Vanadiumbased compounds with various structures and large layer spacings are considered as suitable cathode candidates for ZIBs.In this review,the recent research advances of vanadium-based electrode materials are systematically summarized.The electrode design strategy,electrochemical performances and energy storage mechanisms are emphasized.Finally,we point out the limitation of vanadium-based materials at present and the future prospect.
基金the auspices of the National Natural Science Foundation of China(52277219,61974072).
文摘Potassium-ion batteries(PIBs)represent one of the most promising alternatives to lithium-ion batteries(LIBs),owing to their exceptional attributes such as high voltages,potent power capabilities,and cost-effectiveness.Nonetheless,challenges arise from the sluggish kinetics and significant volume expansion observed during the insertion/extraction of large-radii potassium ions,leading to subpar rate performance and considerable capacity degradation in potassium-ion batteries.Consequently,it becomes imperative to explore advanced anode materials exhibiting high electrochemical activity and robust structural stability.In this regard,the present review focuses on recent progress in metal-organic compounds(MOCs)as anode materials for potassium-ion batteries,systematically discussing their outstanding merits from the perspective of metal speciation.Additionally,the principal mechanism of K ion storage within relevant MOCs is presented.Furthermore,a comprehensive summary of existing drawbacks that hinder the broader application of MOCs-based materials is provided,along with proposed guidelines and strategies for addressing the inferior performance characteristics.This review serves to illuminate the development of MOCs-based anode materials for potassium-ion batteries and offers a valuable reference for future research endeavors.
基金Project(51672234)supported by the National Natural Science Foundation of ChinaProject(1337304)supported by the Program for Innovative Research Cultivation Team in University,Ministry of Education,China
文摘Na0.44MnO2 nanorods have been prepared by a hydrothermal method.The experimental parameters have been systematically investigated and optimized.The results show that Na0.44MnO2 nanorods obtained via the hydrothermal treatment at 200℃for 16 h show the best electrochemical properties,which deliver the high initial discharge capacity of 110.7 mA·h/g at 50 mA/g in potential window 2.0-4.0 V.To further improve their electrochemical properties,a ball milling process with graphene has been carried out to obtain Na0.44MnO2/graphene composite.The initial discharge capacity of Na0.44MnO2/graphene composite is 106.9 mA·h/g at a current density of 50 mA/g.After 100 cycles,the residual discharge capacity is 91.8 mA·h/g and the capacity retention rate is 85.9%,which is much higher than that of pristine Na0.44MnO2 nanorods(74.7%)at the same condition.What is more,when the current density reaches 500 and 1000 mA/g,the corresponding discharge capacities of Na0.44MnO2/graphene composite are about 89 and 78 mA·h/g,respectively,indicating outstanding rate capability.