期刊文献+
共找到210,084篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand 被引量:3
1
作者 Ming Huang Kai Xu +2 位作者 Zijian Liu Chaoshui Xu Mingjuan Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期291-302,共12页
Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic character... Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic characteristics of EICP-treated specimens against the impact of drying-wetting(D-W)cycles is under-explored yet.This study investigates the evolution of mechanical behavior and pore charac-teristics of EICP-treated sea sand subjected to D-W cycles.The uniaxial compressive strength(UCS)tests,synchrotron radiation micro-computed tomography(micro-CT),and three-dimensional(3D)recon-struction of CT images were performed to study the multiscale evolution characteristics of EICP-reinforced sea sand under the effect of D-W cycles.The potential correlations between microstructure characteristics and macro-mechanical property deterioration were investigated using gray relational analysis(GRA).Results showed that the UCS of EICP-treated specimens decreases by 63.7% after 15 D-W cycles.The proportion of mesopores gradually decreases whereas the proportion of macropores in-creases due to the exfoliated calcium carbonate with increasing number of D-W cycles.The micro-structure in EICP-reinforced sea sand was gradually disintegrated,resulting in increasing pore size and development of pore shape from ellipsoidal to columnar and branched.The gray relational degree suggested that the weight loss rate and UCS deterioration were attributed to the development of branched pores with a size of 100-1000 m m under the action of D-W cycles.Overall,the results in this study provide a useful guidancee for the long-term stability and evolution characteristics of EICP-reinforced sea sand under D-W weathering conditions. 展开更多
关键词 Enzyme-induced carbonate precipitation(EICP) Plant-based urease Drying-wetting(D-W)cycles Microstructure
下载PDF
Impact of effective stress on permeability for carbonate fractured-vuggy rocks 被引量:1
2
作者 Ke Sun Huiqing Liu +5 位作者 Juliana Y.Leung Jing Wang Yabin Feng Renjie Liu Zhijiang Kang Yun Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期942-960,共19页
To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of ef... To gain insight into the flow mechanisms and stress sensitivity for fractured-vuggy reservoirs,several core models with different structural characteristics were designed and fabricated to investigate the impact of effective stress on permeability for carbonate fractured-vuggy rocks(CFVR).It shows that the permeability performance curves under different pore and confining pressures(i.e.altered stress conditions)for the fractured core models and the vuggy core models have similar change patterns.The ranges of permeability variation are significantly wider at high pore pressures,indicating that permeability reduction is the most significant during the early stage of development for fractured-vuggy reservoirs.Since each obtained effective stress coefficient for permeability(ESCP)varies with the changes in confining pressure and pore pressure,the effective stresses for permeability of four representative CFVR show obvious nonlinear characteristics,and the variation ranges of ESCP are all between 0 and 1.Meanwhile,a comprehensive ESCP mathematical model considering triple media,including matrix pores,fractures,and dissolved vugs,was proposed.It is proved theoretically that the ESCP of CFVR generally varies between 0 and 1.Additionally,the regression results showed that the power model ranked highest among the four empirical models mainly applied in stress sensitivity characterization,followed by the logarithmic model,exponential model,and binomial model.The concept of“permeability decline rate”was introduced to better evaluate the stress sensitivity performance for CFVR,in which the one-fracture rock is the strongest,followed by the fracture-vug rock and two-horizontalfracture rock;the through-hole rock is the weakest.In general,this study provides a theoretical basis to guide the design of development and adjustment programs for carbonate fractured-vuggy reservoirs. 展开更多
关键词 Effective stress PERMEABILITY carbonate fractured-vuggy rocks Structure characteristics Stress sensitivity
下载PDF
Effects of Different Concentrations of Sulfate Ions on Carbonate Crude Oil Desorption:Experimental Analysis and Molecular Simulation
3
作者 Nannan Liu Hengchen Qi +1 位作者 Hui Xu Yanfeng He 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1731-1741,共11页
Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate ... Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions. 展开更多
关键词 carbonate rocks WETTABILITY sulfate ions CONCENTRATION molecular simulation DESORPTION
下载PDF
Experimental investigation into the salinity effect on the physicomechanical properties of carbonate saline soil
4
作者 Jiejie Shen Qing Wang +3 位作者 Yating Chen Xuefei Zhang Yan Han Yaowu Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1883-1895,共13页
For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This stu... For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects. 展开更多
关键词 carbonate saline soil Salt content Physicomechanical properties Bound water MICROSTRUCTURE
下载PDF
Effects of Intracratonic Strike-slip Fault on the Differentiation of Carbonate Microfacies: A Case Study of a Permian Platform Margin in the Sichuan Basin(SW China)
5
作者 LIU Jiawei WU Guanghui +3 位作者 TANG Qingsong WU Yonghong ZHANG Wenjin ZHAO Zhongyu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第4期936-954,共19页
In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic dat... In intracratnoic basins, the effect of strike-slip faults on sedimentary microfacies is generally underestimated due to their small scale. Based on the integration of core, well logs, and three-dimensional seismic data, this study presents a comprehensive analysis of the Permian carbonate platform and strike-slip faults in the southwestern Kaijiang-Liangping trough of the Sichuan Basin. The relationship between strike-slip faults and Permian carbonate microfacies is investigated. The results reveals the existence of a NW-trending strike-slip fault zone along the platform margin, exhibiting clear segmentation. The western side of the study area exhibits a rimmed platform margin characterized by type I reefs, which corresponds to the presence of a large-scale strike-slip fault zone. In contrast, the eastern side is characterized by a norimmed and weak rimmed platform margin, accompanied by type II reefs, which align with smaller strike-slip fault zones. It was found that the strike-slip fault had some effects on the platform and reef-shoal complex of the Permain Changxing Formation. First, the platform was divided by strike-slip fault into three segments to show rimmed, week rimmed and norimmed platform. Second, reef-shoal complex devolped along the faulted high position in the strike-slip fault zone, and separated by faulted depression. Third, strike-slip faults can offset or migrated the reef-shoal complex and platform margin. Additionally, the thickness of the platform margin varies across strike-slip fault zone, which is related to the activity of strike-slip faults. The strike-slip faults affect the microfacies by controlling the pre-depositional paleotopography. This case suggests that the strike-slip faults play a crucial role in the diversity and distribution of carbonate microfacies in the intracratonic basin. 展开更多
关键词 strike-slip faults segmentation carbonate platform sediment dispersal pattern Changxing Formation Kaijiang–Liangping trough Sichuan Basin
下载PDF
Exploring in-situ combustion effects on reservoir properties of heavy oil carbonate reservoir
6
作者 Aliya Mukhametdinova Tagir Karamov +6 位作者 Strahinja Markovic Andrey Morkovkin Aleksander Burukhin Evgeny Popov Zi-Qi Sun Ren-Bao Zhao Alexey Cheremisin 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3363-3378,共16页
Laboratory modeling of in-situ combustion is crucial for understanding the potential success of field trials in thermal enhanced oil recovery(EOR) and is a vital precursor to scaling the technology for field applicati... Laboratory modeling of in-situ combustion is crucial for understanding the potential success of field trials in thermal enhanced oil recovery(EOR) and is a vital precursor to scaling the technology for field applications. The high combustion temperatures, reaching up to 480℃, induce significant petrophysical alterations of the rock, an often overlooked aspect in thermal EOR projects. Quantifying these changes is essential for potentially repurposing thermally treated, depleted reservoirs for CO_(2) storage.In this study, we depart from conventional combustion experiments that use crushed core, opting instead to analyze the thermal effects on reservoir properties of carbonate rocks using consolidated samples. This technique maintains the intrinsic porosity and permeability, revealing combustion's impact on porosity and mineralogical alterations, with a comparative analysis of these properties pre-and post-combustion. We characterize porosity and pore geometry evolution using low-field nuclear magnetic resonance, X-ray micro-computed tomography, and low-temperature nitrogen adsorption. Mineral composition of the rock and grain-pore scale alterations are analyzed by scanning electron microscopy and X-ray diffraction.The analysis shows a significant increase in carbonate rocks' porosity, pore size and mineral alterations, and a transition from mixed-wet to a strongly water-wet state. Total porosity of rock samples increased in average for 15%-20%, and formation of new pores is registered at the scale of 1-30 μm size.High-temperature exposure results in the calcite and dolomite decomposition, calcite dissolution and formation of new minerals—anhydrite and fluorite. Increased microporosity and the shift to strongly water-wet rock state improve the prospects for capillary and residual CO_(2) trapping with greater capacity.Consequently, these findings highlight the importance of laboratory in-situ combustion modeling on consolidated rock over tests that use crushed core, and indicate that depleted combustion stimulated reservoirs may prove to be viable candidates for CO_(2) storage. 展开更多
关键词 In-situ combustion Thermal EOR carbonateS Porosity and pore size MICROCT NMR SEM CO_(2)storage
下载PDF
Effects of Formation Mineral Compositions on the Performance of High- & Low-Salinity Brine Injection in Carbonate Reservoirs
7
作者 Abdulrazag Y. Zekri Mamdouh Taha Ghannam Musaab Ibrahim Magzoub 《World Journal of Engineering and Technology》 2024年第4期1008-1023,共16页
Low-salinity flooding has been extensively investigated. However, the effects of several variables, such as mineralogical composition, have been neglected. In this regard, the main objective here was to optimize low-s... Low-salinity flooding has been extensively investigated. However, the effects of several variables, such as mineralogical composition, have been neglected. In this regard, the main objective here was to optimize low-salinity water flooding of reservoirs with a wide range of rock mineralogy. Five different brines were determined in reservoirs with different mineral compositions. The mineral composition consisted of limestone and dolomite and the mineralogy varied between 0 and 100% limestone content. The results indicated that the optimum mineralogical system consists of 50% limestone and 50% dolomite flooded with 100% diluted formation brine. Additionally, reservoir mineral composition plays a significant role in the performance of low-salinity water flooding. The findings here will improve our understanding of rock composition effects on the performance of low-salinity water flooding and provide the industry with data that can scientifically improve process optimization. 展开更多
关键词 Water Flooding Low Salinity carbonate Reservoirs Rock Mineralogy LIMESTONE
下载PDF
Effects of carbon content on the microstructure and tensile properties of a low-density steel
8
作者 Yongxuan Shang Mingyu Fan +1 位作者 Shuyong Jiang Zhongwu Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期391-401,共11页
Carbon can change the phase components of low-density steels and influence the mechanical properties.In this study,a new method to control the carbon content and avoid the formation ofδ-ferrite by decarburization tre... Carbon can change the phase components of low-density steels and influence the mechanical properties.In this study,a new method to control the carbon content and avoid the formation ofδ-ferrite by decarburization treatment was proposed.The microstructural changes and mechanical characteristics with carbon content induced by decarburization were systematically examined.Crussard-Jaoul(C-J)analysis was employed to examine the work hardening characteristics during the tensile test.During decarburization by heat treatments,the carbon content within the austenite phase decreased,while Mn and Al were almost unchanged;this made the steel with full austenite transform into the austenite and ferrite dual phase.Meanwhile,(Ti,V)C carbides existed in both matrix phase and the mole fraction almost the same.In addition,the formation of other carbides restrained.Carbon loss induced a decrease in strength due to the weakening of the carbon solid solution.For the steel with the single austinite,the deformation mode of austenite was the dislocation planar glide,resulting in the formation of microbands.For the dual-phase steel,the deformation occurred by the dislocation planar glide of austenite first,with the increase in strain,the cross slip of ferrite took place,forming dislocation cells in ferrite.At the late stage of deformation,the work hardening of austinite increased rapidly,while that of ferrite increased slightly. 展开更多
关键词 low-density steels carbon content DECARBURIZATION strengthening mechanisms work hardening behavior
下载PDF
Effects of aggregate size distribution and carbon nanotubes on the mechanical properties of cemented gangue backfill samples under true triaxial compression
9
作者 Qian Yin Fan Wen +7 位作者 Zhigang Tao Hai Pu Tianci Deng Yaoyao Meng Qingbin Meng Hongwen Jing Bo Meng Jiangyu Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期311-324,共14页
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio... The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure. 展开更多
关键词 cemented gangue backfill materials particle size distribution true triaxial compression test carbon nanotubes mechanical properties failure modes
下载PDF
Effect of pore structure on seismic rock-physics characteristics of dense carbonates 被引量:9
10
作者 潘建国 王宏斌 +1 位作者 李闯 赵建国 《Applied Geophysics》 SCIE CSCD 2015年第1期1-10,120,共11页
The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters(e.g., wave velocity) depend on poros... The Ordovician carbonate rocks of the Yingshan formation in the Tarim Basin have a complex pore structure owing to diagenetic and secondary structures. Seismic elastic parameters(e.g., wave velocity) depend on porosity and pore structure. We estimated the average specific surface, average pore-throat radius, pore roundness, and average aspect ratio of carbonate rocks from the Tazhong area. High P-wave velocity samples have small average specific surface, small average pore-throat radius, and large average aspect ratio. Differences in the pore structure of dense carbonate samples lead to fluid-related velocity variability. However, the relation between velocity dispersion and average specific surface, or the average aspect ratio, is not linear. For large or small average specific surface, the pore structure of the rock samples becomes uniform, which weakens squirt fl ow and minimizes the residuals of ultrasonic data and predictions with the Gassmann equation. When rigid dissolved(casting mold) pores coexist with less rigid microcracks, there are significant P-wave velocity differences between measurements and predictions. 展开更多
关键词 carbonate rocks pore structure elastic parameters microstructure Tarim Basin
下载PDF
Effect of vinylene carbonate as electrolyte additive on cycling performance of LiFePO_4/graphite cell at elevated temperature 被引量:4
11
作者 宋海申 曹政 +3 位作者 张治安 赖延清 李劼 刘业翔 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期723-728,共6页
Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galva... Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galvanostatic cycling, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and Raman spectroscopy. The results show that in the presence of VC additive, dissolution of Fe from LiFePO4 material is greatly depressed and stability of graphite structure is improved; the additive can not only reduce reaction of electrolyte on surface of LiFePO4 electrode but also suppress reduction of solvent and thickening of the solid electrolyte interface (SEI) layer on graphite surface. Electrolyte with VC is considered to be a good candidate for improving cycling performance of the LiFePOa/graphite cell at elevated temperature. 展开更多
关键词 LiFeP04 vinylene carbonate electrolyte additive cycling performance
下载PDF
Bicarbonate Daily Variations in a Karst River:the Carbon Sink Effect of Subaquatic Vegetation Photosynthesis 被引量:30
12
作者 ZHANG Cheng WANG Jinliang +1 位作者 PU Junbing YAN Jun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2012年第4期973-979,共7页
Using the Guancun River, an underground stream-fed river, in Rong'an County of Guangxi, China as a case study, the daily biochemical cycle was examined in this paper based on the data collected a weeklong via high re... Using the Guancun River, an underground stream-fed river, in Rong'an County of Guangxi, China as a case study, the daily biochemical cycle was examined in this paper based on the data collected a weeklong via high resolution data logger monitoring and high-frequency sampling. Furthermore, the loss of inorganic carbon along its flow path was estimated. Results show that chemical components of the groundwater input are quite stable, showing little change extent; while all of the chemical parameters from two downstream monitoring stations show diel variation over the monitoring period, suggesting that plant activity in the river has a strong influence on water chemistry of the river. The comparison of the input fluxes from the groundwater with the output fluxes of HCO~ estimated at the downstream monitoring station during the high-frequency sampling period shows a strong decrease of HCO~, indicating that the river is losing inorganic carbon along its flow path. The loss is estimated to be about 1,152 mmol/day/m of HCO~ which represent about 94.9 kg/day of inorganic carbon along the 1,350 m section of the Guancun River. It means that HCO~ entering the river from karst underground stream was either consumed by plants or trapped in the authigenic calcite and thus constitutes a natural sink of carbon for the Guancun karst system. 展开更多
关键词 Diel cycle carbon isotope photosynthetic process subaquatic vegetation karst river carbon sink
下载PDF
Fixation of CO_2 by electrocatalytic reduction to synthesis of dimethyl carbonate in ionic liquid using effective silver-coated nanoporous copper composites 被引量:11
13
作者 Xuan Yun Wang Su Qin Liu Ke Long Huang Qiu Ju Feng De Lai Ye Bing Liu Jin Long Liu Guan Hua Jin 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第8期987-990,共4页
With high surface area,open porosity and high efficiency,a catalyst was prepared and firstly employed in electrocatalytic reduction of CO2 and electrosynthesis of dimethyl carbonate(DMC).The electrochemical property... With high surface area,open porosity and high efficiency,a catalyst was prepared and firstly employed in electrocatalytic reduction of CO2 and electrosynthesis of dimethyl carbonate(DMC).The electrochemical property for electrocatalytic reduction of CO2 in ionic liquid was studied by cyclic voltammogram(CV).The effects of various reaction variables like temperature,working potential and cathode materials on the electrocatalytic performance were also investigated.80%yield of DMC was obtained under the optimal reaction conditions. 展开更多
关键词 ELECTROCATALYTIC Carbon dioxide NANOPOROUS Dimethyl carbonate Ionic liquid
下载PDF
Effects of Carbonate on Exchangeability and Bioavailability of Exogenous Neodymium in Soil 被引量:3
14
作者 徐仲均 李德成 +1 位作者 杨剑虹 彭安 《Journal of Rare Earths》 SCIE EI CAS CSCD 2001年第3期233-237,共5页
The effects of carbonate on the exchangeability and the bioavailability of exogenous neodymium in soil were studied by Nd-147 isotopic tracer method. Exchangeable Nd was extracted by I mol(.)L(-1) NaAc (pH8.2) in the ... The effects of carbonate on the exchangeability and the bioavailability of exogenous neodymium in soil were studied by Nd-147 isotopic tracer method. Exchangeable Nd was extracted by I mol(.)L(-1) NaAc (pH8.2) in the experiment. The results indicate that whether carbonate exists in soil or not, beyond 99% of exogenous Nd is adsorbed by soil. Low-concentration carbonate (0.8 similar to 1.6 g(.)kg(-1)) can reduce exchangeable Nd concentration in soil, while high-concentration carbonate (4.0 g(.)kg(-1)) impacts little on the exchangeable Nd concentration. In addition, carbonate of 0.8 similar to 1.6 g(.)kg(-1) in soil can inhibit wheat seedlings to absorb Nd. However, when the carbonate concentration rises to 4.0 g(.)kg(-1) the inhibition will become indistinct. 展开更多
关键词 rare earths carbonate NEODYMIUM EXCHANGEABILITY BIOAVAILABILITY
下载PDF
Effects of moisture and carbonate additions on CO_2 emission from calcareous soil during closed–jar incubation 被引量:6
15
作者 YanJie DONG Miao CAI JianBin ZHOU 《Journal of Arid Land》 SCIE CSCD 2014年第1期37-43,共7页
Calcareous soil contains organic and inorganic carbon(C) pools,which both contribute to CO2 emission during closed-jar incubation. The mineralization of organic C and dissolution of inorganic C are both related to so... Calcareous soil contains organic and inorganic carbon(C) pools,which both contribute to CO2 emission during closed-jar incubation. The mineralization of organic C and dissolution of inorganic C are both related to soil moisture,but the exact effect of water content on CO2 emission from calcareous soil is unclear. The objective of this experiment was to determine the effect of soil water content(air-dried,30%,70%,and 100% water-holding capacity(WHC)),carbonate type(CaCO3 or MgCO3),and carbonate amount(0.0,1.0%,and 2.0%) on CO2 emission from calcareous soil during closed-jar incubation. Soil CO2 emission increased significantly as the water content increased to 70% WHC,regardless of whether or not the soil was amended with carbonates. Soil CO2 emission remained the same or increased slowly as the soil water content increased from 70% WHC to 100% WHC. When the water content was ≤30% WHC,soil CO2 emission from soil amended with 1.0% inorganic C was greater than that from unamended soil. When the soil water content was 70% or 100% WHC,CO2 emission from CaCO3 amended soil was greater than that from the control. Furthermore,CO2 emission from soil amended with 2.0% CaCO3 was greater than that from soil amended with 1.0% CaCO3. Soil CO2 emission was higher in the MgCO3 amended soil than from the unamended soil. Soil CO2 emission decreased as the MgCO3 content increased. Cumulative CO2 emission was 3-6 times higher from MgCO3 amended soil than from CaCO3 amended soil. There was significant interaction effect between soil moisture and carbonates on CO2 emission. Soil moisture plays an important role in CO2 emission from calcareous soil because it affects both biotic and abiotic processes during the closed-jar incubation. 展开更多
关键词 calcareous soil soil moisture organic carbon CO2 emission
下载PDF
Weathering-pedogenesis of Carbonate Rocks and Its Environmental Effects in Subtropical Region 被引量:4
16
作者 ZHU Lijun HE Shouyang LI Jingyang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第5期982-993,共12页
We investigated the weathering-pedogenesis of carbonate rocks and its environmental effects in subtropical regions of China. The investigation demonstrated that the weathering- pedogenesis of carbonate rocks is the pr... We investigated the weathering-pedogenesis of carbonate rocks and its environmental effects in subtropical regions of China. The investigation demonstrated that the weathering- pedogenesis of carbonate rocks is the process of a joint action of corrosion and illuviation and metasomatism in subtropical region. It is characterized by multi-stage, multi-path and multi-style. With the persisting development of weathering-pedogenesis of carbonate rocks, metasomatic pedogenesis progressively became the main process of the weathering-pedogenesis and the dominant style of formation of minerals. And it proceeds through the whole process of evolution of the weathering-pedogenesis of carbonate rocks. The stage evolution of weathering-pedogenesis of carbonate rocks and the fractionation evolution of newly produced minerals are characterized by obvious vertically zoning structures and the rules of gradation of elements geochemical characteristics in the carbonate rocks weathering profiles. The geochemical process of weathering-pedogenesis of carbonate rocks can be divided into three geochemical evolution stages, i.e., the Ca, Mg-depletion and Si, Al-enrichment stage; the Fe, Mn enrichment stage and the Si-depletion and Al-enrichment stage in the subtropical regions. Consistent with the three geochemical evolution stages, the sequence of formation and evolution of minerals can be divided into the clay mineral stage; the Fe, Mn oxide and the gibbsite stage. The influence of weathering-pedogenesis of carbonate rocks on the chemical forms of heavy elements is mainly affected via newly produced components and minerals in the process of weathering-pedogenesis, e.g., iron oxide minerals and organic matters. The important mechanism for the mobilization, transport and pollution of F and As is affected the selective adsorption and desorption of F and As on the surface of iron oxide minerals in the subtropical karst zones, i.e., the selective adsorption and desorption on mineral surfaces of newly produced minerals in the process of weathering-pedogenesis control the geochemical behavior of elements on the Earth's surface and environmental quality in subtropical regions. 展开更多
关键词 carbonate rocks weathering-pedogenesis metasomatic pedogenesis environmental effects subtropical region
下载PDF
Effects of Lanthanum Carbonate on Vascular Calcification in Elderly Maintenance Hemodialysis Patients 被引量:7
17
作者 王晓慧 张新 +7 位作者 穆昌军 何泳 彭清平 杨国胜 李明梅 刘端 李静 丁国华 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2015年第4期508-513,共6页
Summary: The effect of lanthanum carbonate on abdominal aortic calcification (AAC) in the elderly maintenance hemodialysis (MHD) patients was investigated. Fifty-four cases subjected to routine MHD complicated wi... Summary: The effect of lanthanum carbonate on abdominal aortic calcification (AAC) in the elderly maintenance hemodialysis (MHD) patients was investigated. Fifty-four cases subjected to routine MHD complicated with skin pruritus admitted to our hospital were selected and randomly divided into case group (n=28) and control group (n=26). The control group was given routine MHD alone. The case group was given lanthanum carbonate additionally on the basis of routine MHD. The changes of itching degrees at first and third month, and serum calcium, phosphorus, calcium-phosphorus products, intact parathyroid hormone (iPTH) levels and AAC scores at third month after treatments were compared be- tween the two groups. The correlation between calcium-phosphorus products and AAC scores was also analyzed. There was no significant difference in the baseline of blood urea nitrogen (BUN), serum creatinine (Scr), uric acid, albumin, hemoglobin, C reactive protein (CRP), low density lipoprotein (LDL), high density lipoprotein (HDL), triglyceride, total cholesterol between case group and control group (P〉0.05 for all). There was also no significant difference in the baseline itching scores between the case group and the control group (P〉0.05). At 1st and 3rd month after treatment, the itching scores in the case group were 14.2±3.2 and 10.5±2.3, respectively, which were significantly lower than the baseline and those in the control group (P〈0.05 for all). At 1 st and 3rd month after treatment, the itching scores in the control group were 23.6v5.9 and 24.8±6.3, respectively, which were significantly higher than the baseline (P〈0.05). There was no significant difference in the baseline of serum calcium, phos- phorus, calcium-phosphorus products, iPTH levels between the case group and control group (P〉0.05). At 3rd month after treatment, serum phosphorus, calcium-phosphorus products and iPTH levels in the case group were decreased significantly as compared with the baseline (P〈0.05), and the serum calcium, phosphorus, calcium-phosphorus products, and iPTH levels were statistically decreased as compared with those in the control group (P〈0.05). The AAC scores showed statistically significant difference between the case group and the control group (P〈0.05). The serum phosphorus and AAC scores showed a positive correlation in both two groups. It was suggested that the administration of lanthanum carbon- ate in the elderly MHD patients can effectively relieve itching, and simultaneously reduce serum phos- phorus and iPTH levels, resulting in the attenuation of vascular calcification. 展开更多
关键词 maintenance hemodialysis lanthanum carbonate intact parathyroid hormone serum phosphorus abdominal aortic calcification
下载PDF
Effects of carbon anhydrase on utilization of bicarbonate in microalgae:a case study in Lake Hongfeng 被引量:4
18
作者 Haitao Li Yanyou Wu Lihua Zhao 《Acta Geochimica》 EI CAS CSCD 2018年第4期519-525,共7页
A bidirectional labeling method was established to distinguish the proportions of HCO3- and CO2 utiliza- tion pathways of microalgae in Lake Hongfeng. The method was based on microalgae cultured in a medium by adding ... A bidirectional labeling method was established to distinguish the proportions of HCO3- and CO2 utiliza- tion pathways of microalgae in Lake Hongfeng. The method was based on microalgae cultured in a medium by adding equal concentrations of NaH13CO3 with different 613C values simultaneously. The inorganic carbon sources were quantified according to the stable carbon isotope composition in the treated microalgae. The effects of extracellular carbonic anhydrase (CAex) on the HCO3 and CO2 utilization pathways were distinguished using acetazolamide, a potent membrane-impermeable carbonic anhydrase inhibitor. The results show utilization of the added HCO3- was only 8% of the total carbon sources in karst lake. The proportion of the HCO3- utilization path- way was 52% of total inorganic carbon assimilation. Therefore, in the natural water of the karst area, the microalgae used less bicarbonate that preexisted in the aqueous medium than CO2 derived from the atmosphere. CAex increased the utilization of inorganic carbon from the atmosphere. The microalgae with CAex had greater carbon sequestration capacity in this karst area. 展开更多
关键词 MICROALGAE Carbonic anhydrase Stable carbon isotope Inorganic carbon utilization
下载PDF
硅碳负极的失效机理与FEC的改善作用 被引量:1
19
作者 王海 李素丽 +5 位作者 郭若愚 黄玲玲 黄浩南 陈帅 许梦清 李伟善 《华南师范大学学报(自然科学版)》 CAS 北大核心 2024年第2期18-24,共7页
采用含和不含氟代碳酸乙烯酯(FEC)的电解液,研究了一种硅碳材料作为锂离子电池负极的充放电行为,对充放电循环前后的硅碳电极进行了组成和形貌的谱学表征,并通过计算比较了电解液主要成分的还原活性。结果表明:不含FEC的电解液,硅碳负... 采用含和不含氟代碳酸乙烯酯(FEC)的电解液,研究了一种硅碳材料作为锂离子电池负极的充放电行为,对充放电循环前后的硅碳电极进行了组成和形貌的谱学表征,并通过计算比较了电解液主要成分的还原活性。结果表明:不含FEC的电解液,硅碳负极首次充放电库伦效率低、容量衰减快,这是因为硅碳表面不能形成稳定的SEI,嵌锂后体积膨胀使SEI开裂,电解液持续分解。相反,含FEC的电解液,因FEC比电解液其他组分更容易在硅碳负极上还原,生成含氟的聚合物,形成稳定的SEI,抑制电解液还原分解,并缓冲硅碳负极的体积膨胀,从而显著提高库伦效率和循环稳定性。添加5%的FEC,硅碳负极首次充放电库伦效率从83%提高到86%;添加10%的FEC,0.2 C充放电循环50次后,硅碳负极的容量保持率从28%提高到75%。 展开更多
关键词 锂离子电池 硅碳负极 失效 氟代碳酸乙烯酯
下载PDF
Factors influencing pore-pressure prediction in complex carbonates based on effective medium theory 被引量:3
20
作者 Wang Ruihe Wang Zizhen +2 位作者 Shan Xun Qiu Hao Li Tianyang 《Petroleum Science》 SCIE CAS CSCD 2013年第4期494-499,共6页
A calculation model based on effective medium theory has been developed for predicting elastic properties of dry carbonates with complex pore structures by integrating the Kuster-Toksǒz model with a differential meth... A calculation model based on effective medium theory has been developed for predicting elastic properties of dry carbonates with complex pore structures by integrating the Kuster-Toksǒz model with a differential method.All types of pores are simultaneously introduced to the composite during the differential iteration process according to the ratio of their volume fractions.Based on this model,the effects of pore structures on predicted pore-pressure in carbonates were analyzed.Calculation results indicate that cracks with low pore aspect ratios lead to pore-pressure overestimation which results in lost circulation and reservoir damage.However,moldic pores and vugs with high pore aspect ratios lead to pore-pressure underestimation which results in well kick and even blowout.The pore-pressure deviation due to cracks and moldic pores increases with an increase in porosity.For carbonates with complex pore structures,adopting conventional pore-pressure prediction methods and casing program designs will expose the well drilling engineering to high uncertainties.Velocity prediction models considering the influence of pore structure need to be built to improve the reliability and accuracy of pore-pressure prediction in carbonates. 展开更多
关键词 carbonateS effective medium theory elastic properties pore-pressure prediction pore structure
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部