期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stress sensitivity of carbonate gas reservoirs and its microscopic mechanism
1
作者 CHENG Youyou GUO Chunqiu +5 位作者 CHEN Pengyu SHI Haidong TAN Chengqian CHENG Muwei XING Yuzhong LUO Xiang 《Petroleum Exploration and Development》 2023年第1期166-174,共9页
In order to evaluate the stress sensitivity of carbonate reservoirs,a series of rock stress sensitivity tests were carried out under in-situ formation temperature and stress condition.Based on the calibration of capil... In order to evaluate the stress sensitivity of carbonate reservoirs,a series of rock stress sensitivity tests were carried out under in-situ formation temperature and stress condition.Based on the calibration of capillary pressure curve,the variable fractal dimension was introduced to establish the conversion formula between relaxation time and pore size.By using the nuclear magnetic resonance(NMR)method,the pore volume loss caused by stress sensitivity within different scales of pore throat was quantitatively analyzed,and the microscopic mechanism of stress sensitivity of carbonate gas reservoirs was clarified.The results show that fractures can significantly affect the stress sensitivity of carbonate reservoirs.With the increase of initial permeability,the stress sensitivity coefficient decreases and then increases for porous reservoirs,but increases monotonously for fractured-porous reservoirs.The pore volume loss caused by stress sensitivity mainly occurs for mesopores(0.02–0.50μm),contributing more than 50%of the total volume loss.Single high-angle fracture contributes 9.6%of the stress sensitivity and 15.7%of the irreversible damage.The microscopic mechanism of the stress sensitivity of carbonate gas reservoirs can be concluded as fracture closure,elastic contraction of pores and plastic deformation of rock skeleton. 展开更多
关键词 carbonate gas reservoir stress sensitivity NMR fractal dimension pore structure microscopic mechanism
下载PDF
Experimental test and theoretical calculation of the fracture height limit of gas pipe flow to Darcy flow
2
作者 XIONG Yu FU Xitong +3 位作者 LI Qian SUN Zewei ZHANG Chun ZHANG Fei 《Petroleum Exploration and Development》 CSCD 2022年第3期614-624,共11页
Low-speed flow experiments in which ultra-fine copper tubes are used to simulate micro-fractures in carbonate strata are conducted to analyze the variations of gas flow state in fractures of different fracture heights... Low-speed flow experiments in which ultra-fine copper tubes are used to simulate micro-fractures in carbonate strata are conducted to analyze the variations of gas flow state in fractures of different fracture heights,determine flow state transition limit and transition interval,and establish the calculation method of flow state transition limit.The results show that the ideal Hagen-Poiseuille flow is the main form of gas flow in large fractures.Due to the decrease of fracture height,the gas flow in the fracture changes from Hagen-Poiseuille flow with ideal smooth seam surface to non-Hagen-Poiseuille flow,and the critical point of the transition is the boundary of flow state transition.After the fracture height continues to decrease to a certain extent below the boundary of the flow state transition fracture height,the form of gas flow gradually changes to the ideal Darcy flow,thus the transition interval of the gas flow state in the closing process of fracture can be determined.Based on the three-dimensional microconvex body scanning of the fracture surface,the material properties of fracture and properties of fluid in the fracture,a method for calculating the boundary of flow state transition is established.The experimental test and theoretical calculation show that the limit of the fracture height for the transition from pipe flow to Darcy flow is about twice the sum of the maximum height of the microconvex bodies on the upper and lower sides of the fracture. 展开更多
关键词 carbonate gas reservoir fracture height flow experiment flow limit Hagen-Poiseuille flow Darcy flow microconvex body
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部