Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic...Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic limestone reservoirs of Cretaceous in Iran-Iraq as an example,this paper proposes a balanced waterflooding development technology for thick and complex carbonate reservoirs.This technology includes the fine division of development units by concealed baffles and barriers,the combination of multi well type and multi well pattern,and the construction of balanced water injection and recovery system.Thick carbonate reservoirs in Iran-Iraq are characterized by extremely vertical heterogeneity,development of multi-genesis ultra-high permeability zones,and highly concealed baffles and barriers.Based on the technologies of identification,characterization,and sealing evaluation for concealed baffles and barriers,the balanced waterflooding development technology is proposed,and three types of balanced waterflooding development modes/techniques are formed,namely,conventional stratigraphic framework,fine stratigraphic framework,and deepened stratigraphic framework.Numerical simulations show that this technology is able to realize a fine and efficient waterflooding development to recover,in a balanced manner,the reserves of thick and complex carbonate reservoirs in Iran and Iraq.The proposed technology provides a reference for the development optimization of similar reservoirs.展开更多
The Asmari Formation in the G oilfield on the Iran-Iraq border is a fractured-porous multi-lithology mixed reservoir, for which fracture is an important factor affecting oil productivity and water cut. The characteriz...The Asmari Formation in the G oilfield on the Iran-Iraq border is a fractured-porous multi-lithology mixed reservoir, for which fracture is an important factor affecting oil productivity and water cut. The characterization and modeling of fractures in the carbonate reservoir of G oilfield are challenging due to weak conventional well log responses of fractures and a lack of specific logs, such as image logs. This study proposes an integrated approach for characterizing and modeling fractures in the carbonate reservoir. The features, formation mechanism, influencing factors, and prediction methods of fractures in the Asmari Formation carbonate reservoirs of G oilfield were studied using core observation, thin section, image log, cross-dipole acoustic log (CDAL), geomechanics numerical simulation (GNS), and production data. According to CDAL-based fracture density interpretation, GNS-based fracture intensity prediction between wells, and DFN-based rock fracture properties modeling, the quantitative fracture characterization for G oilfield was realized. This research shows that the fractures in the Asamri Formation are mainly medium-to high-angle shear fractures. The substantial compression stress during the Miocene played a major role in the formation of the prominent fractures and determined their trend in the region, with primary trends of NNW-SSE and NNE-SSW. The fracture distribution has regularity, and the fractures in zone A dolomites are more highly developed than that in zone B limestones vertically. Horizontally, fractures intensity is mainly controlled by faults and structural location. The results of this study may benefit the optimization of well design during field development. From 2019 to 2021, three horizontal wells pilot tests were deployed in the fractures belt in zone A, and these fractures prominently increased the permeability of tight dolomite reservoirs. The initial production of the wells is four to five times the average production of other wells in the area, showing a good development effect. Meanwhile, the updated numerical simulation validates that the history match accuracy of water cut based on the dual-porosity model is significantly improved, proving the fracture evaluation and prediction results to be relatively reliable and applicable.展开更多
The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightn...The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.展开更多
Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensi...Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensitive to brine pH, its efficiency can deteriorate in carbonate reservoirs containing highly acidic formation water. In this study, polymer efficiency in an acidic carbonate reservoir was investigated experimentally for different salinity levels and SO42− concentrations. Results indicated that lowering salinity improved polymer stability, resulting in less polymer adsorption, greater wettability alteration, and ultimately, higher oil recovery. However, low salinity may not be desirable for LSPF if the injected fluid does not contain a sufficient number of sulfate (SO42−) ions. Analysis of polymer efficiency showed that more oil can be produced with the same polymer concentration by adjusting the SO42− content. Therefore, when river water, which is relatively easily available in onshore fields, is designed to be injected into an acidic carbonate reservoir, the LSPF method proposed in this study can be a reliable and environmentally friendly method with addition of a sufficient number of SO42− ions to river water.展开更多
The Feixianguan Formation reservoirs in northeastern Sichuan are mainly a suite of carbonate platform deposits.The reservoir types are diverse with high heterogeneity and complex genetic mechanisms.Pores,vugs and frac...The Feixianguan Formation reservoirs in northeastern Sichuan are mainly a suite of carbonate platform deposits.The reservoir types are diverse with high heterogeneity and complex genetic mechanisms.Pores,vugs and fractures of different genetic mechanisms and scales are often developed in association,and it is difficult to classify reservoir types merely based on static data such as outcrop observation,and cores and logging data.In the study,the reservoirs in the Feixianguan Formation are grouped into five types by combining dynamic and static data,that is,karst breccia-residual vuggy type,solution-enhanced vuggy type,fractured-vuggy type,fractured type and matrix type(non-reservoir).Based on conventional logging data,core data and formation microscanner image(FMI)data of the Qilibei block,northeastern Sichuan Basin,the reservoirs are classified in accordance with fracture-vug matching relationship.Based on the principle of cluster analysis,K-Nearest Neighbor(KNN)classification templates are established,and the applicability of the model is verified by using the reservoir data from wells uninvolved in modeling.Following the analysis of the results of reservoir type discrimination and the production of corresponding reservoir intervals,the contributions of various reservoir types to production are evaluated and the reliability of reservoir type classification is verified.The results show that the solution-enhanced vuggy type is of high-quality sweet spot reservoir in the study area with good physical property and high gas production,followed by the fractured-vuggy type,and the fractured and karst breccia-residual vuggy types are the least promising.展开更多
The Ordovician reservoirs in the Tahe oilfield are dominated by fractured-vuggy carbonate reservoirs, of which fault-karst reservoirs are a hot topic in recent years. Fault-karst reservoirs feature high production, la...The Ordovician reservoirs in the Tahe oilfield are dominated by fractured-vuggy carbonate reservoirs, of which fault-karst reservoirs are a hot topic in recent years. Fault-karst reservoirs feature high production, large burial depth, and strong heterogeneity under the control of faulting and karstification. Based on geological, logging, and seismic data, this study classified the Ordovician fault-karst reservoirs in the Yuejin block of the Tahe oilfield into three types, namely karst-cave, dissolved-vug, and fractured types, and established the integrated identification criteria of the three types of reservoirs. This study characterized karst caves, dissolved vugs, and multi-scale faults through seismic wave impedance inversion and frequency-domain detection of multi-scale faults. 3D geological models of different types of reservoirs were built using the combined deterministic and stochastic methods and characterized the spatial distribution of multi-scale faults, karst caves, dissolved vugs, and physical property parameters of reservoir. This study established the method for the geological modeling of fault-karst reservoirs, achieved the quantitative characterization and revealed the heterogeneity of fault-karst reservoirs. The karst-cave and dissolved-vug types are high in porosity and act as reservoirs, while the fractured type is high in permeability and act as flow pathway. This study lays the foundation for the development index prediction, well emplacement, and efficient development of the fault-karst carbonate reservoirs.展开更多
Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Wes...Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Western Iraq as an example,a new reservoir classification and discrimination method is established by using the K-means clustering method and the Bayesian discrimination method.These methods are applied to non-cored wells to calculate the discrimination accuracy of the reservoir type,and thus the main reasons for low accuracy of reservoir discrimination are clarified.The results show that the discrimination accuracy of reservoir type based on K-means clustering and Bayesian stepwise discrimination is strongly related to the accuracy of the core data.The discrimination accuracy rate of TypeⅠ,TypeⅡ,and TypeⅤreservoirs is found to be significantly higher than that of TypeⅢand TypeⅣreservoirs using the method of combining K-means clustering and Bayesian theory based on logging data.Although the recognition accuracy of the new methodology for the TypeⅣreservoir is low,with average accuracy the new method has reached more than 82%in the entire study area,which lays a good foundation for rapid and accurate discrimination of reservoir types and the fine evaluation of a reservoir.展开更多
Based on the analysis of geological characteristics of ultra-deep fault-controlled fracture-cavity carbonate reservoirs and division of reservoir units, two physical models were made, and physical simulations of oil d...Based on the analysis of geological characteristics of ultra-deep fault-controlled fracture-cavity carbonate reservoirs and division of reservoir units, two physical models were made, and physical simulations of oil displacement by water injection were carried out to find out water flooding mechanism in the fault-controlled fracture-cavity carbonate reservoir under complex flow state. On this basis, a mathematical model of fault-controlled carbonate reservoir with coexisting seepage and free flow has been established. Pilot water injection tests have been carried out to evaluate the effects of enhancing oil recovery by water injection. The results show that: fault-controlled fracture-cavity carbonate reservoir units can be divided into three types:the strong natural energy connected type, the weak natural energy connected type and the weak natural energy isolated type;the fault-fracture activity index of the fault-controlled fractured-cavity body can effectively characterize the connectivity of the reservoir and predict the effective direction of water injection;the mathematical model of fault-controlled carbonate reservoir with coexisting seepage and free flows can quantitatively describe the fluid flow law in the fracture-cavity body;the water injected into the fault-controlled fracture-cavity body is weakly affected by the capillary force of the lithologic body, and the oil-water movement is mainly dominated by gravity. The development modes of single well water injection, unit water injection,and single well high pressure water injection proposed based on the connection structure of fracture-cavity space and well storage space configuration are confirmed effective by pilot tests, with obvious water injection gravity flooding effect.展开更多
The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the o...The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the oilfield at present since pre-stack inversion is always limited by poor seismic data quality and insufficient logging data.In this paper,based on amplitude preserved seismic data processing and rock-physics analysis,pre-stack inversion is employed to predict the caved carbonate reservoir in TZ45 area by seriously controlling the quality of inversion procedures.These procedures mainly include angle-gather conversion,partial stack,wavelet estimation,low-frequency model building and inversion residual analysis.The amplitude-preserved data processing method can achieve high quality data based on the principle that they are very consistent with the synthetics.Besides,the foundation of pre-stack inversion and reservoir prediction criterion can be established by the connection between reservoir property and seismic reflection through rock-physics analysis.Finally,the inversion result is consistent with drilling wells in most cases.It is concluded that integrated with amplitude-preserved processing and rock-physics,pre-stack inversion can be effectively applied in the caved carbonate reservoir prediction.展开更多
Secondary storage spaces with very complex geometries are well developed in Ordovician carbonate reservoirs in the Tarim Basin,which is taken as a study case in this paper.It is still not clear how the secondary stora...Secondary storage spaces with very complex geometries are well developed in Ordovician carbonate reservoirs in the Tarim Basin,which is taken as a study case in this paper.It is still not clear how the secondary storage space shape influences the P-& S-wave velocities (or elastic properties) in complex carbonate reservoirs.In this paper,three classical rock physics models (Wyllie timeaverage equation,Gassmann equation and the Kuster-Toks z model) are comparably analyzed for their construction principles and actual velocity prediction results,aiming at determining the most favourable rock physics model to consider the influence of secondary storage space shape.Then relationships between the P-& S-wave velocities in carbonate reservoirs and geometric shapes of secondary storage spaces are discussed from different aspects based on actual well data by employing the favourable rock physics model.To explain the influence of secondary storage space shape on V P-V S relationship,it is analyzed for the differences of S-wave velocities between derived from common empirical relationships (including Castagna's mud rock line and Greenberg-Castagna V P-V S relationship) and predicted by the rock physics model.We advocate that V P-V S relationship for complex carbonate reservoirs should be built for different storage space types.For the carbonate reservoirs in the Tarim Basin,the V P-V S relationships for fractured,fractured-cavernous,and fractured-hole-vuggy reservoirs are respectively built on the basis of velocity prediction and secondary storage space type determination.Through the discussion above,it is expected that the velocity prediction and the V P-V S relationships for complex carbonate reservoirs should fully consider the influence of secondary storage space shape,thus providing more reasonable constraints for prestack inversion,further building a foundation for realizing carbonate reservoir prediction and fluid prediction.展开更多
Carbonate reservoirs worldwide are complex in structure,diverse in form,and highly heterogeneous.Based on these characteristics,the reservoir stimulation technologies and fluid flow characteristics of carbonate reserv...Carbonate reservoirs worldwide are complex in structure,diverse in form,and highly heterogeneous.Based on these characteristics,the reservoir stimulation technologies and fluid flow characteristics of carbonate reservoirs are briefly described in this study.The development methods and EOR technologies of carbonate reservoirs are systematically summarized,the relevant mechanisms are analyzed,and the application status of oil fields is catalogued.The challenges in the development of carbonate reservoirs are discussed,and future research directions are explored.In the current development processes of carbonate reservoirs,water flooding and gas flooding remain the primary means but are often prone to channeling problems.Chemical flooding is an effective method of tertiary oil recovery,but the harsh formation conditions require high-performance chemical agents.The application of emerging technologies can enhance the oil recovery efficiency and environmental friendliness to a certain extent,which is welcome in hard-to-recover areas such as heavy oil reservoirs,but the economic cost is often high.In future research on EOR technologies,flow field control and flow channel plugging will be the potential directions of traditional development methods,and the application of nanoparticles will revolutionize the chemical EOR methods.On the basis of diversified reservoir stimulation,combined with a variety of modern data processing schemes,multichannel EOR technologies are being developed to realize the systematic,intelligent,and cost-effective development of carbonate reservoirs.展开更多
The carbonate reservoirs in the Tarim Basin are characterized by low matrix-porosity,heterogeneity and anisotropy,which make it difficult to predict and evaluate these reservoirs.The reservoir formations in Lundong ar...The carbonate reservoirs in the Tarim Basin are characterized by low matrix-porosity,heterogeneity and anisotropy,which make it difficult to predict and evaluate these reservoirs.The reservoir formations in Lundong area experienced a series of diagenesis and tectonic evolution stages.And secondary storage spaces such as fractures and dissolution caves were developed while nearly all the primary pores have disappeared.Based on a summary of different types of storage spaces and their responses in conventional logs,FMI and full waveform sonic logs which are sensitive to different reservoirs,the comprehensive probability index (CPI) method is applied to evaluating the reservoirs and a standard of reservoir classification is established.By comparing the evaluation results with actual welllogging results,the method has proven to be practical for formation evaluation of carbonate reservoirs,especially for the fractured carbonate reservoirs.In reservoir fluid identification,the multivariate stepwise discriminant analysis (MSDA) method is introduced.Combining the CPI method and MSDA method,comprehensive formation evaluation has been performed for fractured and caved carbonate reservoirs in the Tarim Basin.Additionally,on the basis of secondary pore inversion results,another new method of formation evaluation is also proposed in the discussion part of this paper.Through detailed application result analysis,the method shows a promising capability for formation evaluation of complex carbonate reservoirs dominated by various secondary pores such as holes,caves,and cracks.展开更多
Conventional seismic exploration method based on post-stack data usually fails to identify the distribution of fractured and caved carbonate reservoirs in the Tarim Basin,so the rich pre-stack information should be ap...Conventional seismic exploration method based on post-stack data usually fails to identify the distribution of fractured and caved carbonate reservoirs in the Tarim Basin,so the rich pre-stack information should be applied to the prediction of carbonate reservoirs.Amplitude-preserved seismic data processing is the foundation.In this paper,according to the feature of desert seismic data (including weak reflection,fast attenuation of high frequency components,strong coherent noises,low S/N and resolution),a set of amplitude-preserved processing techniques is applied and a reasonable processing flow is formed to obtain the high quality data.After implementing a set of pre-stack amplitude-preserved processing,we test and define the kernel parameters of amplitude-preserved Kirchhoff PSTM (pre-stack time migration) and subsequent gathers processing,in order to obtain the amplitude-preserved gathers used to the isotropic pre-stack inversion for the identification of caved reservoirs.The AVO characteristics of obtained gathers fit well with the synthetic gathers from logging data,and it proves that the processing above is amplitudepreserved.The azimuthal processing techniques,including azimuth division and binning enlargement,are implemented for amplitude-preserved azimuthal gathers with the uniform fold.They can be used in the anisotropic inversion to detect effective fractures.The processing techniques and flows are applied to the field seismic data,and are proved available for providing the amplitude-preserved gathers for carbonate reservoir prediction in the Tarim Basin.展开更多
The GOI(grains containing oil inclusions) index is used to distinguish oil zones,oil-water zones and water zones in sandstone oil reservoirs.However,this method cannot be directly applied to carbonate rocks that may...The GOI(grains containing oil inclusions) index is used to distinguish oil zones,oil-water zones and water zones in sandstone oil reservoirs.However,this method cannot be directly applied to carbonate rocks that may not have clear granular textures.In this paper we propose the Effective Grid Containing Oil Inclusions(EGOI) method for carbonate reservoirs.A microscopic view under10× ocular and 10 x objective is divided into 10×10 grids,each with an area of 0.0625 mm×0.0625 mm.An effective grid is defined as one that is cut(touched) by a stylolite,a healed fracture,a vein,or a pore-filling material.EGOI is defined as the number of effective grids containing oil inclusions divided by the total number of effective grids multiplied by 100%.Based on data from the Tarim Basin,the EGOI values indicative of the paleo-oil zones,oil-water zones,and water zones are 〉5%,1%-5%,and 〈1%,respectively.However,the oil zones in young reservoirs(charged in the Himalayan) generally have lower EGOI values,typically 3%-5%.展开更多
Carbonate reservoirs exhibit strong heterogeneity in the distribution of pore types that can be quantitatively characterized by applying Xu–Payne multi-porosity model.However,there are some prerequisites to this mode...Carbonate reservoirs exhibit strong heterogeneity in the distribution of pore types that can be quantitatively characterized by applying Xu–Payne multi-porosity model.However,there are some prerequisites to this model the porosity and saturation need to be provided.In general,these application conditions are difficult to satisfy for seismic data.In order to overcome this problem,we present a two-step method to estimate the porosity and saturation and pore type of carbonate reservoirs from seismic data.In step one,the pore space of the carbonate reservoir is equivalent to a single-porosity system with an effective pore aspect ratio;then,a 3D rock-physics template(RPT)is established through the Gassmann’s equations and effective medium models;and then,the effective aspect ratio of pore,porosity and fluid saturation are simultaneously estimated from the seismic data based on 3D RPT.In step two,the pore space of the carbonate reservoir is equivalent to a triple-porosity system.Combined with the inverted porosity and saturation in the first step,the porosities of three pore types can be inverted from the seismic elastic properties.The application results indicate that our method can obtain accurate physical properties consistent with logging data and ensure the reliability of characterization of pore type.展开更多
Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir ...Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir in Yueman block of South Tahe area, Halahatang oilfield, Tarim Basin, were studied systematically. And the regular pattern of hydrocarbon accumulation and enrichment was analyzed systematically based on development practice of the reservoirs. The results show that fault-karst carbonate reservoirs are distributed in the form of "body by body" discontinuously, heterogeneously and irregularly, which are controlled by the development of faults. Three formation models of fault-karst carbonate reservoirs, namely, the models controlled by the main deep-large fault, the secondary fault and the secondary internal fault, are built. The hydrocarbon accumulation and enrichment of fault-karst carbonate reservoirs is controlled by the spatiotemporal matching relation between hydrocarbon generation period and fault activity, and the size and segmentation of fault. The study results can effectively guide the well deployment and help the efficient development of fault-karst carbonate reservoirs of South Tahe area, Halahatang oilfield.展开更多
Refracturing treatment is often performed on Russian carbonate reservoirs because of the quick production decline of reservoirs.The traditional refracturing model assumes that a refracture initiates in the normal dire...Refracturing treatment is often performed on Russian carbonate reservoirs because of the quick production decline of reservoirs.The traditional refracturing model assumes that a refracture initiates in the normal direction relative to the initial hydro-fracture.This assumption is inconsistent with oilfield measurements of refracture propagation trajectories.Indeed,the existing model is not based on an indepth understanding of initiation and propagation mechanisms of the second hydraulic fractures during refracturing.In this study,we use the extended finite element method to investigate refracture propagation paths at different initiation angles.Both the enriched function approach and phantom mode technique are incorporated into the refracturing model,thereby ensuring that the refracture can freely extend on the structured mesh without any refinement near the crack tips.Key factors including production time,stress anisotropy and initiation angle,and the propped mechanical effect are analyzed in detail.This study provides new insight into the mechanism of refracture propagation in unconventional reservoirs.展开更多
1 Introduction Numerous studies on the Meso-Neoproterozoic life evolution show that the cyanobacteria which thrived and dominated the biological world in the Proterozoic Era is closely related to the genesis of microb...1 Introduction Numerous studies on the Meso-Neoproterozoic life evolution show that the cyanobacteria which thrived and dominated the biological world in the Proterozoic Era is closely related to the genesis of microbial carbonate rocks.Considerable oil and gas resources can be found in microbial carbonate rocks and many related oil and gas展开更多
The Carboniferous reservoir in KJ oilfield is a carbonate reservoir with extremely low porosity and permeability and high-pressure. The reservoir has severe heterogeneity, is deeply buried, has complex master control ...The Carboniferous reservoir in KJ oilfield is a carbonate reservoir with extremely low porosity and permeability and high-pressure. The reservoir has severe heterogeneity, is deeply buried, has complex master control factors, is covered with thick salt, all of which result in the serious distortion of reflection time and amplitudes under the salt, the poor seismic imaging, and the low S/N ratio and resolution. The key to developing this kind of reservoir is to correctly predict the distribution of highly profitable oil zones. In this paper we start by analyzing the master control factors, perform seismic-log calibration, optimize the seismic attributes indicating the lithofacies, karst, petrophysical properties, and fractures, and combine these results with the seismic, geology, log, oil reservoir engineering, and well data. We decompose the seismic prediction into six key areas: structural interpretation, prediction of lithofacies, karst, petrophysical properties, fractures, and then perform an integrated assessment. First, based on building the models of faults and fractures, sedimentary facies, and karst, we predict the distribution of the most favorable reservoir zones qualitatively. Then, using multi-parameter inversion and integrated multi-attribute analysis, we predict the favorable reservoir distribution quantitatively and semi-quantitatively to clarify the distribution of high-yield zones. We finally have a reliable basis for optimal selection of exploration and development targets.展开更多
An intelligent prediction method for fractures in tight carbonate reservoir has been established by upgrading single-well fracture identification and interwell fracture trend prediction with artificial intelligence,mo...An intelligent prediction method for fractures in tight carbonate reservoir has been established by upgrading single-well fracture identification and interwell fracture trend prediction with artificial intelligence,modifying construction of interwell fracture density model,and modeling fracture network and making fracture property equivalence.This method deeply mines fracture information in multi-source isomerous data of different scales to reduce uncertainties of fracture prediction.Based on conventional fracture indicating parameter method,a prediction method of single-well fractures has been worked out by using 3 kinds of artificial intelligence methods to improve fracture identification accuracy from 3 aspects,small sample classification,multi-scale nonlinear feature extraction,and decreasing variance of the prediction model.Fracture prediction by artificial intelligence using seismic attributes provides many details of inter-well fractures.It is combined with fault-related fracture information predicted by numerical simulation of reservoir geomechanics to improve inter-well fracture trend prediction.An interwell fracture density model for fracture network modeling is built by coupling single-well fracture identification and interwell fracture trend through co-sequential simulation.By taking the tight carbonate reservoir of Oligocene-Miocene AS Formation of A Oilfield in Zagros Basin of the Middle East as an example,the proposed prediction method was applied and verified.The single-well fracture identification improves over 15%compared with the conventional fracture indication parameter method in accuracy rate,and the inter-well fracture prediction improves over 25%compared with the composite seismic attribute prediction.The established fracture network model is well consistent with the fluid production index.展开更多
基金Supported by the Major Science and Technology Project of CNPC(2023ZZ19-01).
文摘Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic limestone reservoirs of Cretaceous in Iran-Iraq as an example,this paper proposes a balanced waterflooding development technology for thick and complex carbonate reservoirs.This technology includes the fine division of development units by concealed baffles and barriers,the combination of multi well type and multi well pattern,and the construction of balanced water injection and recovery system.Thick carbonate reservoirs in Iran-Iraq are characterized by extremely vertical heterogeneity,development of multi-genesis ultra-high permeability zones,and highly concealed baffles and barriers.Based on the technologies of identification,characterization,and sealing evaluation for concealed baffles and barriers,the balanced waterflooding development technology is proposed,and three types of balanced waterflooding development modes/techniques are formed,namely,conventional stratigraphic framework,fine stratigraphic framework,and deepened stratigraphic framework.Numerical simulations show that this technology is able to realize a fine and efficient waterflooding development to recover,in a balanced manner,the reserves of thick and complex carbonate reservoirs in Iran and Iraq.The proposed technology provides a reference for the development optimization of similar reservoirs.
基金supported by the National Science and Technology Major Project“Reservoir Characterization of Typical Thick Carbonate Reservoirs in the Middle East”(Grant No.2017ZX05032004-001).
文摘The Asmari Formation in the G oilfield on the Iran-Iraq border is a fractured-porous multi-lithology mixed reservoir, for which fracture is an important factor affecting oil productivity and water cut. The characterization and modeling of fractures in the carbonate reservoir of G oilfield are challenging due to weak conventional well log responses of fractures and a lack of specific logs, such as image logs. This study proposes an integrated approach for characterizing and modeling fractures in the carbonate reservoir. The features, formation mechanism, influencing factors, and prediction methods of fractures in the Asmari Formation carbonate reservoirs of G oilfield were studied using core observation, thin section, image log, cross-dipole acoustic log (CDAL), geomechanics numerical simulation (GNS), and production data. According to CDAL-based fracture density interpretation, GNS-based fracture intensity prediction between wells, and DFN-based rock fracture properties modeling, the quantitative fracture characterization for G oilfield was realized. This research shows that the fractures in the Asamri Formation are mainly medium-to high-angle shear fractures. The substantial compression stress during the Miocene played a major role in the formation of the prominent fractures and determined their trend in the region, with primary trends of NNW-SSE and NNE-SSW. The fracture distribution has regularity, and the fractures in zone A dolomites are more highly developed than that in zone B limestones vertically. Horizontally, fractures intensity is mainly controlled by faults and structural location. The results of this study may benefit the optimization of well design during field development. From 2019 to 2021, three horizontal wells pilot tests were deployed in the fractures belt in zone A, and these fractures prominently increased the permeability of tight dolomite reservoirs. The initial production of the wells is four to five times the average production of other wells in the area, showing a good development effect. Meanwhile, the updated numerical simulation validates that the history match accuracy of water cut based on the dual-porosity model is significantly improved, proving the fracture evaluation and prediction results to be relatively reliable and applicable.
基金Supported by the PetroChina and Southwest Petroleum University Cooperation Project(2020CX010101)the National Natural ScienceFoundation of China(91955204).
文摘The largest Precambrian gas field (Anyue gas field) in China has been discovered in the central Sichuan Basin. However, the deep ancient Ediacaran (Sinian) dolomite presents a substantial challenge due to their tightness and heterogeneity, rather than assumed large-area stratified reservoirs controlled by mound-shoal microfacies. This complicates the characterization of “sweet spot” reservoirs crucial for efficient gas exploitation. By analyzing compiled geological, geophysical and production data, this study investigates the impact of strike-slip fault on the development and distribution of high-quality “sweet spot” (fractured-vuggy) reservoirs in the Ediacaran dolomite of the Anyue gas field. The dolomite matrix reservoir exhibits low porosity (less than 4%) and low permeability (less than 0.5×10^(-3) μm^(2)). Contrarily, fractures and their dissolution processes along strike-slip fault zone significantly enhance matrix permeability by more than one order of magnitude and matrix porosity by more than one time. Widespread “sweet spot” fracture-vuggy reservoirs are found along the strike-slip fault zone, formed at the end of the Ediacaran. These fractured reservoirs are controlled by the coupling mechanisms of sedimentary microfacies, fracturing and karstification. Karstification prevails at the platform margin, while both fracturing and karstification control high-quality reservoirs in the intraplatform, resulting in reservoir diversity in terms of scale, assemblage and type. The architecture of the strike-slip fault zone governed the differential distribution of fracture zones and the fault-controlled “sweet spot” reservoirs, leading to wide fractured-vuggy reservoirs across the strike-slip fault zone. In conclusion, the intracratonic weak strike-slip fault can play a crucial role in improving tight carbonate reservoir, and the strike-slip fault-related “sweet spot” reservoir emerges as a unique and promising target for the efficient development of deep hydrocarbon resources. Tailored development strategies need to be implemented for these reservoirs, considering the diverse and differential impacts exerted by strike-slip faults on the reservoirs.
基金supported by the Energy Efficiency&Resources(No.20212010200010)the“Development of Intelligential Diagnosis,Abandonment Process and Management Technology for Decrepit Oil and Gas Wells”(No.20216110100010)of the Korea Institute of Energy Technology EvaluationPlanning(KETEP)grant funded by the Korean Government Ministry of Trade,Industry&Energy.
文摘Polymers play an important role in hybrid enhanced oil recovery (EOR), which involves both a polymer and low-salinity water. Because the polymer commonly used for low-salinity polymer flooding (LSPF) is strongly sensitive to brine pH, its efficiency can deteriorate in carbonate reservoirs containing highly acidic formation water. In this study, polymer efficiency in an acidic carbonate reservoir was investigated experimentally for different salinity levels and SO42− concentrations. Results indicated that lowering salinity improved polymer stability, resulting in less polymer adsorption, greater wettability alteration, and ultimately, higher oil recovery. However, low salinity may not be desirable for LSPF if the injected fluid does not contain a sufficient number of sulfate (SO42−) ions. Analysis of polymer efficiency showed that more oil can be produced with the same polymer concentration by adjusting the SO42− content. Therefore, when river water, which is relatively easily available in onshore fields, is designed to be injected into an acidic carbonate reservoir, the LSPF method proposed in this study can be a reliable and environmentally friendly method with addition of a sufficient number of SO42− ions to river water.
文摘The Feixianguan Formation reservoirs in northeastern Sichuan are mainly a suite of carbonate platform deposits.The reservoir types are diverse with high heterogeneity and complex genetic mechanisms.Pores,vugs and fractures of different genetic mechanisms and scales are often developed in association,and it is difficult to classify reservoir types merely based on static data such as outcrop observation,and cores and logging data.In the study,the reservoirs in the Feixianguan Formation are grouped into five types by combining dynamic and static data,that is,karst breccia-residual vuggy type,solution-enhanced vuggy type,fractured-vuggy type,fractured type and matrix type(non-reservoir).Based on conventional logging data,core data and formation microscanner image(FMI)data of the Qilibei block,northeastern Sichuan Basin,the reservoirs are classified in accordance with fracture-vug matching relationship.Based on the principle of cluster analysis,K-Nearest Neighbor(KNN)classification templates are established,and the applicability of the model is verified by using the reservoir data from wells uninvolved in modeling.Following the analysis of the results of reservoir type discrimination and the production of corresponding reservoir intervals,the contributions of various reservoir types to production are evaluated and the reliability of reservoir type classification is verified.The results show that the solution-enhanced vuggy type is of high-quality sweet spot reservoir in the study area with good physical property and high gas production,followed by the fractured-vuggy type,and the fractured and karst breccia-residual vuggy types are the least promising.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA14010204).
文摘The Ordovician reservoirs in the Tahe oilfield are dominated by fractured-vuggy carbonate reservoirs, of which fault-karst reservoirs are a hot topic in recent years. Fault-karst reservoirs feature high production, large burial depth, and strong heterogeneity under the control of faulting and karstification. Based on geological, logging, and seismic data, this study classified the Ordovician fault-karst reservoirs in the Yuejin block of the Tahe oilfield into three types, namely karst-cave, dissolved-vug, and fractured types, and established the integrated identification criteria of the three types of reservoirs. This study characterized karst caves, dissolved vugs, and multi-scale faults through seismic wave impedance inversion and frequency-domain detection of multi-scale faults. 3D geological models of different types of reservoirs were built using the combined deterministic and stochastic methods and characterized the spatial distribution of multi-scale faults, karst caves, dissolved vugs, and physical property parameters of reservoir. This study established the method for the geological modeling of fault-karst reservoirs, achieved the quantitative characterization and revealed the heterogeneity of fault-karst reservoirs. The karst-cave and dissolved-vug types are high in porosity and act as reservoirs, while the fractured type is high in permeability and act as flow pathway. This study lays the foundation for the development index prediction, well emplacement, and efficient development of the fault-karst carbonate reservoirs.
基金funded by the National Key Research and Development Program(Grant No.2018YFC0807804-2)。
文摘Reservoir classification is a key link in reservoir evaluation.However,traditional manual means are inefficient,subjective,and classification standards are not uniform.Therefore,taking the Mishrif Formation of the Western Iraq as an example,a new reservoir classification and discrimination method is established by using the K-means clustering method and the Bayesian discrimination method.These methods are applied to non-cored wells to calculate the discrimination accuracy of the reservoir type,and thus the main reasons for low accuracy of reservoir discrimination are clarified.The results show that the discrimination accuracy of reservoir type based on K-means clustering and Bayesian stepwise discrimination is strongly related to the accuracy of the core data.The discrimination accuracy rate of TypeⅠ,TypeⅡ,and TypeⅤreservoirs is found to be significantly higher than that of TypeⅢand TypeⅣreservoirs using the method of combining K-means clustering and Bayesian theory based on logging data.Although the recognition accuracy of the new methodology for the TypeⅣreservoir is low,with average accuracy the new method has reached more than 82%in the entire study area,which lays a good foundation for rapid and accurate discrimination of reservoir types and the fine evaluation of a reservoir.
基金Supported by China National Science and Technology Major Project (2017ZX05008-004)PetroChina Science and Technology Major Project (2018E-18)。
文摘Based on the analysis of geological characteristics of ultra-deep fault-controlled fracture-cavity carbonate reservoirs and division of reservoir units, two physical models were made, and physical simulations of oil displacement by water injection were carried out to find out water flooding mechanism in the fault-controlled fracture-cavity carbonate reservoir under complex flow state. On this basis, a mathematical model of fault-controlled carbonate reservoir with coexisting seepage and free flow has been established. Pilot water injection tests have been carried out to evaluate the effects of enhancing oil recovery by water injection. The results show that: fault-controlled fracture-cavity carbonate reservoir units can be divided into three types:the strong natural energy connected type, the weak natural energy connected type and the weak natural energy isolated type;the fault-fracture activity index of the fault-controlled fractured-cavity body can effectively characterize the connectivity of the reservoir and predict the effective direction of water injection;the mathematical model of fault-controlled carbonate reservoir with coexisting seepage and free flows can quantitatively describe the fluid flow law in the fracture-cavity body;the water injected into the fault-controlled fracture-cavity body is weakly affected by the capillary force of the lithologic body, and the oil-water movement is mainly dominated by gravity. The development modes of single well water injection, unit water injection,and single well high pressure water injection proposed based on the connection structure of fracture-cavity space and well storage space configuration are confirmed effective by pilot tests, with obvious water injection gravity flooding effect.
基金supported by National Basic Research Program(2006CB202304)of Chinaco-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project of China(Grant No.2011ZX05004003)
文摘The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the oilfield at present since pre-stack inversion is always limited by poor seismic data quality and insufficient logging data.In this paper,based on amplitude preserved seismic data processing and rock-physics analysis,pre-stack inversion is employed to predict the caved carbonate reservoir in TZ45 area by seriously controlling the quality of inversion procedures.These procedures mainly include angle-gather conversion,partial stack,wavelet estimation,low-frequency model building and inversion residual analysis.The amplitude-preserved data processing method can achieve high quality data based on the principle that they are very consistent with the synthetics.Besides,the foundation of pre-stack inversion and reservoir prediction criterion can be established by the connection between reservoir property and seismic reflection through rock-physics analysis.Finally,the inversion result is consistent with drilling wells in most cases.It is concluded that integrated with amplitude-preserved processing and rock-physics,pre-stack inversion can be effectively applied in the caved carbonate reservoir prediction.
基金co-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project(Grant No.2011ZX05004003)
文摘Secondary storage spaces with very complex geometries are well developed in Ordovician carbonate reservoirs in the Tarim Basin,which is taken as a study case in this paper.It is still not clear how the secondary storage space shape influences the P-& S-wave velocities (or elastic properties) in complex carbonate reservoirs.In this paper,three classical rock physics models (Wyllie timeaverage equation,Gassmann equation and the Kuster-Toks z model) are comparably analyzed for their construction principles and actual velocity prediction results,aiming at determining the most favourable rock physics model to consider the influence of secondary storage space shape.Then relationships between the P-& S-wave velocities in carbonate reservoirs and geometric shapes of secondary storage spaces are discussed from different aspects based on actual well data by employing the favourable rock physics model.To explain the influence of secondary storage space shape on V P-V S relationship,it is analyzed for the differences of S-wave velocities between derived from common empirical relationships (including Castagna's mud rock line and Greenberg-Castagna V P-V S relationship) and predicted by the rock physics model.We advocate that V P-V S relationship for complex carbonate reservoirs should be built for different storage space types.For the carbonate reservoirs in the Tarim Basin,the V P-V S relationships for fractured,fractured-cavernous,and fractured-hole-vuggy reservoirs are respectively built on the basis of velocity prediction and secondary storage space type determination.Through the discussion above,it is expected that the velocity prediction and the V P-V S relationships for complex carbonate reservoirs should fully consider the influence of secondary storage space shape,thus providing more reasonable constraints for prestack inversion,further building a foundation for realizing carbonate reservoir prediction and fluid prediction.
基金supported by the Innovation Project for Graduates in UPC(Grant YCX2019016)the National Natural Science Foundation of China(Nos.51774306 and 51974346)+1 种基金the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008。
文摘Carbonate reservoirs worldwide are complex in structure,diverse in form,and highly heterogeneous.Based on these characteristics,the reservoir stimulation technologies and fluid flow characteristics of carbonate reservoirs are briefly described in this study.The development methods and EOR technologies of carbonate reservoirs are systematically summarized,the relevant mechanisms are analyzed,and the application status of oil fields is catalogued.The challenges in the development of carbonate reservoirs are discussed,and future research directions are explored.In the current development processes of carbonate reservoirs,water flooding and gas flooding remain the primary means but are often prone to channeling problems.Chemical flooding is an effective method of tertiary oil recovery,but the harsh formation conditions require high-performance chemical agents.The application of emerging technologies can enhance the oil recovery efficiency and environmental friendliness to a certain extent,which is welcome in hard-to-recover areas such as heavy oil reservoirs,but the economic cost is often high.In future research on EOR technologies,flow field control and flow channel plugging will be the potential directions of traditional development methods,and the application of nanoparticles will revolutionize the chemical EOR methods.On the basis of diversified reservoir stimulation,combined with a variety of modern data processing schemes,multichannel EOR technologies are being developed to realize the systematic,intelligent,and cost-effective development of carbonate reservoirs.
基金co-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project(GrantNo.2011ZX05004003)
文摘The carbonate reservoirs in the Tarim Basin are characterized by low matrix-porosity,heterogeneity and anisotropy,which make it difficult to predict and evaluate these reservoirs.The reservoir formations in Lundong area experienced a series of diagenesis and tectonic evolution stages.And secondary storage spaces such as fractures and dissolution caves were developed while nearly all the primary pores have disappeared.Based on a summary of different types of storage spaces and their responses in conventional logs,FMI and full waveform sonic logs which are sensitive to different reservoirs,the comprehensive probability index (CPI) method is applied to evaluating the reservoirs and a standard of reservoir classification is established.By comparing the evaluation results with actual welllogging results,the method has proven to be practical for formation evaluation of carbonate reservoirs,especially for the fractured carbonate reservoirs.In reservoir fluid identification,the multivariate stepwise discriminant analysis (MSDA) method is introduced.Combining the CPI method and MSDA method,comprehensive formation evaluation has been performed for fractured and caved carbonate reservoirs in the Tarim Basin.Additionally,on the basis of secondary pore inversion results,another new method of formation evaluation is also proposed in the discussion part of this paper.Through detailed application result analysis,the method shows a promising capability for formation evaluation of complex carbonate reservoirs dominated by various secondary pores such as holes,caves,and cracks.
基金financially supported by National Basic Research Program of China(No.2011CB201100)
文摘Conventional seismic exploration method based on post-stack data usually fails to identify the distribution of fractured and caved carbonate reservoirs in the Tarim Basin,so the rich pre-stack information should be applied to the prediction of carbonate reservoirs.Amplitude-preserved seismic data processing is the foundation.In this paper,according to the feature of desert seismic data (including weak reflection,fast attenuation of high frequency components,strong coherent noises,low S/N and resolution),a set of amplitude-preserved processing techniques is applied and a reasonable processing flow is formed to obtain the high quality data.After implementing a set of pre-stack amplitude-preserved processing,we test and define the kernel parameters of amplitude-preserved Kirchhoff PSTM (pre-stack time migration) and subsequent gathers processing,in order to obtain the amplitude-preserved gathers used to the isotropic pre-stack inversion for the identification of caved reservoirs.The AVO characteristics of obtained gathers fit well with the synthetic gathers from logging data,and it proves that the processing above is amplitudepreserved.The azimuthal processing techniques,including azimuth division and binning enlargement,are implemented for amplitude-preserved azimuthal gathers with the uniform fold.They can be used in the anisotropic inversion to detect effective fractures.The processing techniques and flows are applied to the field seismic data,and are proved available for providing the amplitude-preserved gathers for carbonate reservoir prediction in the Tarim Basin.
基金supported by the project of Research on Fluid Inclusions and Geological Ages of Hydrocarbon Accumulations of Key Reservoirs in the Tarim Basin (No.041014080008)
文摘The GOI(grains containing oil inclusions) index is used to distinguish oil zones,oil-water zones and water zones in sandstone oil reservoirs.However,this method cannot be directly applied to carbonate rocks that may not have clear granular textures.In this paper we propose the Effective Grid Containing Oil Inclusions(EGOI) method for carbonate reservoirs.A microscopic view under10× ocular and 10 x objective is divided into 10×10 grids,each with an area of 0.0625 mm×0.0625 mm.An effective grid is defined as one that is cut(touched) by a stylolite,a healed fracture,a vein,or a pore-filling material.EGOI is defined as the number of effective grids containing oil inclusions divided by the total number of effective grids multiplied by 100%.Based on data from the Tarim Basin,the EGOI values indicative of the paleo-oil zones,oil-water zones,and water zones are 〉5%,1%-5%,and 〈1%,respectively.However,the oil zones in young reservoirs(charged in the Himalayan) generally have lower EGOI values,typically 3%-5%.
基金supported by the China National Key R D plan(2019YFC0605504)Scientific Research&Technology Development Project of China National Petroleum Corporation(Grant Nos.2017D-3504 and 2018D-4305)
文摘Carbonate reservoirs exhibit strong heterogeneity in the distribution of pore types that can be quantitatively characterized by applying Xu–Payne multi-porosity model.However,there are some prerequisites to this model the porosity and saturation need to be provided.In general,these application conditions are difficult to satisfy for seismic data.In order to overcome this problem,we present a two-step method to estimate the porosity and saturation and pore type of carbonate reservoirs from seismic data.In step one,the pore space of the carbonate reservoir is equivalent to a single-porosity system with an effective pore aspect ratio;then,a 3D rock-physics template(RPT)is established through the Gassmann’s equations and effective medium models;and then,the effective aspect ratio of pore,porosity and fluid saturation are simultaneously estimated from the seismic data based on 3D RPT.In step two,the pore space of the carbonate reservoir is equivalent to a triple-porosity system.Combined with the inverted porosity and saturation in the first step,the porosities of three pore types can be inverted from the seismic elastic properties.The application results indicate that our method can obtain accurate physical properties consistent with logging data and ensure the reliability of characterization of pore type.
基金Supported by the China National Sicence and Technology Project(2016ZX05004)
文摘Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir in Yueman block of South Tahe area, Halahatang oilfield, Tarim Basin, were studied systematically. And the regular pattern of hydrocarbon accumulation and enrichment was analyzed systematically based on development practice of the reservoirs. The results show that fault-karst carbonate reservoirs are distributed in the form of "body by body" discontinuously, heterogeneously and irregularly, which are controlled by the development of faults. Three formation models of fault-karst carbonate reservoirs, namely, the models controlled by the main deep-large fault, the secondary fault and the secondary internal fault, are built. The hydrocarbon accumulation and enrichment of fault-karst carbonate reservoirs is controlled by the spatiotemporal matching relation between hydrocarbon generation period and fault activity, and the size and segmentation of fault. The study results can effectively guide the well deployment and help the efficient development of fault-karst carbonate reservoirs of South Tahe area, Halahatang oilfield.
基金supported by Beijing Natural Science Foundation(Grant No.3222030)CNPC Innovation Found(Grant No.2021DQ02-0201)+1 种基金the National Natural Science Foundation of China(Grant Nos.51936001 and 52174045)the Award Cultivation Foundation from Beijing Institute of Petrochemical Technology(Project No.BIPTACF-002)
文摘Refracturing treatment is often performed on Russian carbonate reservoirs because of the quick production decline of reservoirs.The traditional refracturing model assumes that a refracture initiates in the normal direction relative to the initial hydro-fracture.This assumption is inconsistent with oilfield measurements of refracture propagation trajectories.Indeed,the existing model is not based on an indepth understanding of initiation and propagation mechanisms of the second hydraulic fractures during refracturing.In this study,we use the extended finite element method to investigate refracture propagation paths at different initiation angles.Both the enriched function approach and phantom mode technique are incorporated into the refracturing model,thereby ensuring that the refracture can freely extend on the structured mesh without any refinement near the crack tips.Key factors including production time,stress anisotropy and initiation angle,and the propped mechanical effect are analyzed in detail.This study provides new insight into the mechanism of refracture propagation in unconventional reservoirs.
文摘1 Introduction Numerous studies on the Meso-Neoproterozoic life evolution show that the cyanobacteria which thrived and dominated the biological world in the Proterozoic Era is closely related to the genesis of microbial carbonate rocks.Considerable oil and gas resources can be found in microbial carbonate rocks and many related oil and gas
文摘The Carboniferous reservoir in KJ oilfield is a carbonate reservoir with extremely low porosity and permeability and high-pressure. The reservoir has severe heterogeneity, is deeply buried, has complex master control factors, is covered with thick salt, all of which result in the serious distortion of reflection time and amplitudes under the salt, the poor seismic imaging, and the low S/N ratio and resolution. The key to developing this kind of reservoir is to correctly predict the distribution of highly profitable oil zones. In this paper we start by analyzing the master control factors, perform seismic-log calibration, optimize the seismic attributes indicating the lithofacies, karst, petrophysical properties, and fractures, and combine these results with the seismic, geology, log, oil reservoir engineering, and well data. We decompose the seismic prediction into six key areas: structural interpretation, prediction of lithofacies, karst, petrophysical properties, fractures, and then perform an integrated assessment. First, based on building the models of faults and fractures, sedimentary facies, and karst, we predict the distribution of the most favorable reservoir zones qualitatively. Then, using multi-parameter inversion and integrated multi-attribute analysis, we predict the favorable reservoir distribution quantitatively and semi-quantitatively to clarify the distribution of high-yield zones. We finally have a reliable basis for optimal selection of exploration and development targets.
基金Supported by the China Youth Program of National Natural Science Foundation(42002134)The 14th Special Support Program of China Postdoctoral Science Foundation(2021T140735).
文摘An intelligent prediction method for fractures in tight carbonate reservoir has been established by upgrading single-well fracture identification and interwell fracture trend prediction with artificial intelligence,modifying construction of interwell fracture density model,and modeling fracture network and making fracture property equivalence.This method deeply mines fracture information in multi-source isomerous data of different scales to reduce uncertainties of fracture prediction.Based on conventional fracture indicating parameter method,a prediction method of single-well fractures has been worked out by using 3 kinds of artificial intelligence methods to improve fracture identification accuracy from 3 aspects,small sample classification,multi-scale nonlinear feature extraction,and decreasing variance of the prediction model.Fracture prediction by artificial intelligence using seismic attributes provides many details of inter-well fractures.It is combined with fault-related fracture information predicted by numerical simulation of reservoir geomechanics to improve inter-well fracture trend prediction.An interwell fracture density model for fracture network modeling is built by coupling single-well fracture identification and interwell fracture trend through co-sequential simulation.By taking the tight carbonate reservoir of Oligocene-Miocene AS Formation of A Oilfield in Zagros Basin of the Middle East as an example,the proposed prediction method was applied and verified.The single-well fracture identification improves over 15%compared with the conventional fracture indication parameter method in accuracy rate,and the inter-well fracture prediction improves over 25%compared with the composite seismic attribute prediction.The established fracture network model is well consistent with the fluid production index.