The Influence of pulp pH, dispersants and auxiliary collectors on reverse flotation of carbonate-containing iron ores were explored. Interactions between iron ores and quartz were theoretically analyzed by flotation s...The Influence of pulp pH, dispersants and auxiliary collectors on reverse flotation of carbonate-containing iron ores were explored. Interactions between iron ores and quartz were theoretically analyzed by flotation solution chemistry and DLVO theory. The results indicated that the iron concentrate grade improved sharply when pH increased from 11.0 to 12.0, but changed unobviously when pH was larger than 12.0, which was related to solution chemistry of siderite and interactions among particles. Sodium tripolyphosphate was an effective dispersant and sodium dodecyl sulfate was an effective auxiliary collector of KS-III. Both recovery and grade enhanced by the action of sodium dodecyl sulfate or sodium tripolyphosphate when pH was 12.0.展开更多
Exploiting the intelligent photocatalysts capable of phase separation provides a promising solution to the removal of uranium,which is expected to solve the difficulty in separation and the poor selectivity of traditi...Exploiting the intelligent photocatalysts capable of phase separation provides a promising solution to the removal of uranium,which is expected to solve the difficulty in separation and the poor selectivity of traditional photocatalysts in carbonate-containing uranium wastewater.In this paper,theγ-FeOOH/konjac glucomannan grafted with phenolic hydroxyl groups/poly-N-isopropylacrylamide(γ-FeOOH/KGM(Ga)/PNIPAM)thermosensitive hydrogel is proposed as the photocatalysts for extracting uranium from carbonate-containing uranium wastewater.The dynamic phase transformation is demonstrated to confirm the arbitrary transition ofγ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel from a dispersed state with a high specific surface area at low temperatures to a stable aggregated state at high temperatures.Notably,theγ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel achieves a remarkably high rate of 92.3%in the removal of uranium from the wastewater containing carbonates and maintains the efficiency of uranium removal from uranium mine wastewater at over 90%.Relying on electron spin resonance and free radical capture experiment,we reveal the adsorption-reduction-nucleation-crystalliza tion mechanism of uranium onγ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel.Overall,this strategy provides a promising solution to treating uranium-contaminated wastewater,showing a massive potential in water purification.展开更多
文摘The Influence of pulp pH, dispersants and auxiliary collectors on reverse flotation of carbonate-containing iron ores were explored. Interactions between iron ores and quartz were theoretically analyzed by flotation solution chemistry and DLVO theory. The results indicated that the iron concentrate grade improved sharply when pH increased from 11.0 to 12.0, but changed unobviously when pH was larger than 12.0, which was related to solution chemistry of siderite and interactions among particles. Sodium tripolyphosphate was an effective dispersant and sodium dodecyl sulfate was an effective auxiliary collector of KS-III. Both recovery and grade enhanced by the action of sodium dodecyl sulfate or sodium tripolyphosphate when pH was 12.0.
基金supported by the National Natural Science Foundation of China(21976147,U2267224,and 22106126)the Sichuan Science and Technology Program(2021YFG0096,2024NSFSC1148,2022YFG0371,and 2024NSFTD0012)+2 种基金the Project of State Key Laboratory of Environmentfriendly Energy Materials in Southwest University of Science and Technology(21fksy22)the Research Fund of Southwest University of Science and Technology for PhD(23zx7103)the Open Fund of China National Nuclear Corporation Key Laboratory for Uranium Extraction from Seawater(KLUES202201).
文摘Exploiting the intelligent photocatalysts capable of phase separation provides a promising solution to the removal of uranium,which is expected to solve the difficulty in separation and the poor selectivity of traditional photocatalysts in carbonate-containing uranium wastewater.In this paper,theγ-FeOOH/konjac glucomannan grafted with phenolic hydroxyl groups/poly-N-isopropylacrylamide(γ-FeOOH/KGM(Ga)/PNIPAM)thermosensitive hydrogel is proposed as the photocatalysts for extracting uranium from carbonate-containing uranium wastewater.The dynamic phase transformation is demonstrated to confirm the arbitrary transition ofγ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel from a dispersed state with a high specific surface area at low temperatures to a stable aggregated state at high temperatures.Notably,theγ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel achieves a remarkably high rate of 92.3%in the removal of uranium from the wastewater containing carbonates and maintains the efficiency of uranium removal from uranium mine wastewater at over 90%.Relying on electron spin resonance and free radical capture experiment,we reveal the adsorption-reduction-nucleation-crystalliza tion mechanism of uranium onγ-FeOOH/KGM(Ga)/PNIPAM thermosensitive hydrogel.Overall,this strategy provides a promising solution to treating uranium-contaminated wastewater,showing a massive potential in water purification.