The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the...The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.展开更多
Recently, a new promising type of marine shale gas reservoir, carbonate-rich shale, has been discovered.But the mechanical properties of this type of shale were still unrevealed and the corresponding reservoir stimula...Recently, a new promising type of marine shale gas reservoir, carbonate-rich shale, has been discovered.But the mechanical properties of this type of shale were still unrevealed and the corresponding reservoir stimulation design was lack of guidance. Using the deep downhole cores of an exploratory carbonate-rich shale gas well, the physical and mechanical parameters and failure mechanism of the whole reservoir section were acquired and evaluated systematically, by performing XRD, tri-axial compression, Brazilian splitting, and fracture toughness tests. A new model was established to evaluate the reservoir brittleness based on fracture morphology and stress-strain curve. Recommended strategy for reservoir stimulation was discussed. Results showed that(1) Carbonate-rich shale possessed high compressive strength and high Young's modulus, which were improved by 10.74% and 3.37% compared to that of siliceous shale. It featured high tensile strength and fracture toughness, with insignificant anisotropy.(2) With the content of carbonate minerals increasing, the shear failure morphology transformed from sparse and wide brittle fractures to diffusely distributed and subtle plastic cracks.(3) The brittleness index order was: siliceous shale, clay-rich shale, carbonate-rich shale, and limestone.(4) The special properties of carbonate-rich shale were rooted in the inherent feature of carbonate minerals(high strength, high elastic modulus,and cleavage structure), resulting in greater challenge in reservoirs stimulation. The above findings would promote the understanding of carbonate-rich shale reservoirs and provide reference for the optimum design of reservoir stimulation.展开更多
Shale oil reservoirs are generally characterized by complex mineral compositions, rapid lithofacies changes, and thin laminae. Explorations have confirmed that the type and density of shale laminae significantly influ...Shale oil reservoirs are generally characterized by complex mineral compositions, rapid lithofacies changes, and thin laminae. Explorations have confirmed that the type and density of shale laminae significantly influence reservoir quality, highlighting the importance of accurately identifying these laminae through well logging for effective shale reservoir evaluation. Presently, relevant technologies primarily focus on the qualitative identification of shale laminae using vertical slab images from image logs. However, influenced by the complex borehole conditions and image logging quality, this approach is less effective in identifying millimeter-scale laminae. This study proposes a new method for achieving high-resolution slab images and quantitatively evaluating the laminae using electrical image logs. The new method effectively improves the processing accuracy of slab images by delicately flattening and aligning the button electrode curves derived from electrical image logs point by point. Meanwhile, it allows for the accurate quantitative evaluation of the lamina number through precise identification of peaks and troughs in microelectrode curves. As demonstrated by the applications in shale oil reservoirs in the Gulong area in Daqing and the Ganchagou area in Qinghai, the proposed method can significantly improve accuracy compared to traditional slab images. Furthermore, the lamination index calculated using this method is highly consistent with the lamina number observed in cores. This study provides a new technical method for the quantitative lamina evaluation and rock structure analysis of shale reservoirs.展开更多
Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formatio...Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formation carbonate-rich shale in the Jiyang Depression were analyzed, and the organic matter abundance, reservoir properties, and oil-bearing properties of different laminae were compared. Typical shale storage-seepage structures were classified, and the mobility of oil in different types of shale storage-seepage structure was compared. The results show that the repeated superposition of mud laminae and calcite laminae are the main layer structure of carbonate-rich shales. The calcite laminae are divided into micritic calcite laminae, sparry calcite laminae and fibrous calcite vein. The mud-rich laminae are the main contributor to the organic matter abundance and porosity of shale, with the best hydrocarbon generation potential, reservoir capacity, and oil-bearing property. The micritic calcite laminae also have relatively good hydrocarbon generation potential, reservoir capacity and oil-bearing property. The sparry calcite laminae and fibrous calcite vein have good permeability and conductivity. Four types of shale storage-seepage structure are developed in the carbonate-rich shale, and the mobility of oil in each type of storage-seepage structure is in descending order: sparry calcite laminae enriched shale storage-seepage structure, mixed calcite laminae enriched shale storage-seepage structure, fibrous calcite vein enriched shale storage-seepage structure, and micritic calcite laminae enriched shale storage-seepage structure. The exploration targets of carbonate-rich shale in the Jiyang Depression Shahejie Formation are different in terms of storage-seepage structure at different thermal evolution stages.展开更多
The preferred orientation of clay minerals dominates the intrinsic anisotropy of shale. We introduce the clay lamination (CL) parameter to the Backus averaging method to describe the intrinsic shale anisotropy induc...The preferred orientation of clay minerals dominates the intrinsic anisotropy of shale. We introduce the clay lamination (CL) parameter to the Backus averaging method to describe the intrinsic shale anisotropy induced by the alignment of clay minerals. Then, we perform the inversion of CL and the Thomsen anisotropy parameters. The direct measurement of anisotropy is difficult because of the inability to measure the acoustic velocity in the vertical direction in boreholes and instrument limitations. By introducing the parameter CL, the inversion method provides reasonable estimates of the elastic anisotropy in the Longmaxi shale. The clay content is weakly correlated with the CL parameter. Moreover, the parameter CL is abnormally high at the bottom of the Longmaxi and Wufeng Formations, which are the target reservoirs. Finally, we construct rock physics templates to interpret well logging and reservoir properties.展开更多
This paper systematically discusses the multiple source characteristics and formation mechanisms of carbonate-rich fine-grained sedimentary rocks through the analysis of material source and rock formation.The hydrocar...This paper systematically discusses the multiple source characteristics and formation mechanisms of carbonate-rich fine-grained sedimentary rocks through the analysis of material source and rock formation.The hydrocarbon accumulation characteristics of carbonate-rich fine-grained sedimentary rocks are also summarized.The results show that the main reason for the enrichment of fine-grained carbonate materials in rift lake basins was the supply of multiple material sources,including terrestrial material input,formation of intrabasinal authigenic carbonate,volcanic-hydrothermal material feeding and mixed source.The development of carbonate bedrock in the provenance area controlled the filling scale of carbonate materials in rift lake basins.The volcanic-hydrothermal activity might provide an alkaline fluid to the lake basins to strengthen the material supply for the formation of carbonate crystals.Authigenic carbonate crystals induced by biological processes were the main source of long-term accumulation of fine-grained carbonate materials in the lake basins.Carbonate-rich fine-grained sedimentary rocks with multiple features were formed through the interaction of physical,biochemical and chemical processes during the deposition and post-deposition stages.The source and sedimentary origin of the fine-grained carbonate rock controlled the hydrocarbon accumulation in it.In the multi-source system,the types of"sweet spots"of continental shale oil and gas include endogenous type,terrigenous type,volcanic-hydrothermal type and mixed source type.展开更多
基金financial support by the National Key Research and Development Program of China (No.2022YFE0129800)the National Natural Science Foundation of China (No.52074311)。
文摘The continental shale reservoirs of Jurassic Lianggaoshan Formation in Sichuan Basin contain thin lamina,which is characterized by strong plasticity and developed longitudinal shell limestone interlayer.To improve the production efficiency of reservoirs by multi-cluster fracturing,it is necessary to consider the unbalanced propagation of hydraulic fractures and the penetration effect of fractures.This paper constructed a numerical model of multi-fracture propagation and penetration based on the finite element coupling cohesive zone method;considering the construction cluster spacing,pump rate,lamina strength and other parameters studied the influencing factors of multi-cluster fracture interaction propagation;combined with AE energy data and fracture mode reconstruction method,quantitatively characterized the comprehensive impact of the strength of thin interlayer rock interfaces on the initiation and propagation of fractures that penetrate layers,and accurately predicted the propagation pattern of hydraulic fractures through laminated shale oil reservoirs.Simulation results revealed that in the process of multi-cluster fracturing,the proportion of shear damage is low,and mainly occurs in bedding fractures activated by outer fractures.Reducing the cluster spacing enhances the fracture system's penetration ability,though it lowers the activation efficiency of lamina.The high plasticity of the limestone interlayer may impact the vertical propagation distance of the main fracture.Improving the interface strength is beneficial to the reconstruction of the fracture height,but the interface communication effect is limited.Reasonable selection of layers with moderate lamina strength for fracturing stimulation,increasing the pump rate during fracturing and setting the cluster spacing reasonably are beneficial to improve the effect of reservoir stimulation.
基金sponsored by the “National Natural Science Foundation of China” (No. U22B6003), (No. 52104010), and (No. 52104046)。
文摘Recently, a new promising type of marine shale gas reservoir, carbonate-rich shale, has been discovered.But the mechanical properties of this type of shale were still unrevealed and the corresponding reservoir stimulation design was lack of guidance. Using the deep downhole cores of an exploratory carbonate-rich shale gas well, the physical and mechanical parameters and failure mechanism of the whole reservoir section were acquired and evaluated systematically, by performing XRD, tri-axial compression, Brazilian splitting, and fracture toughness tests. A new model was established to evaluate the reservoir brittleness based on fracture morphology and stress-strain curve. Recommended strategy for reservoir stimulation was discussed. Results showed that(1) Carbonate-rich shale possessed high compressive strength and high Young's modulus, which were improved by 10.74% and 3.37% compared to that of siliceous shale. It featured high tensile strength and fracture toughness, with insignificant anisotropy.(2) With the content of carbonate minerals increasing, the shear failure morphology transformed from sparse and wide brittle fractures to diffusely distributed and subtle plastic cracks.(3) The brittleness index order was: siliceous shale, clay-rich shale, carbonate-rich shale, and limestone.(4) The special properties of carbonate-rich shale were rooted in the inherent feature of carbonate minerals(high strength, high elastic modulus,and cleavage structure), resulting in greater challenge in reservoirs stimulation. The above findings would promote the understanding of carbonate-rich shale reservoirs and provide reference for the optimum design of reservoir stimulation.
文摘Shale oil reservoirs are generally characterized by complex mineral compositions, rapid lithofacies changes, and thin laminae. Explorations have confirmed that the type and density of shale laminae significantly influence reservoir quality, highlighting the importance of accurately identifying these laminae through well logging for effective shale reservoir evaluation. Presently, relevant technologies primarily focus on the qualitative identification of shale laminae using vertical slab images from image logs. However, influenced by the complex borehole conditions and image logging quality, this approach is less effective in identifying millimeter-scale laminae. This study proposes a new method for achieving high-resolution slab images and quantitatively evaluating the laminae using electrical image logs. The new method effectively improves the processing accuracy of slab images by delicately flattening and aligning the button electrode curves derived from electrical image logs point by point. Meanwhile, it allows for the accurate quantitative evaluation of the lamina number through precise identification of peaks and troughs in microelectrode curves. As demonstrated by the applications in shale oil reservoirs in the Gulong area in Daqing and the Ganchagou area in Qinghai, the proposed method can significantly improve accuracy compared to traditional slab images. Furthermore, the lamination index calculated using this method is highly consistent with the lamina number observed in cores. This study provides a new technical method for the quantitative lamina evaluation and rock structure analysis of shale reservoirs.
基金Supported by the China National Science and Technology Major Project(2017ZX05049-004)Sinopec Project(P22083,P23084).
文摘Based on rock mineral and geochemical analysis, microscopic observation, physical property measurement, and thin laminae separation test, etc., the characteristics of typical laminae of the Paleogene Shahejie Formation carbonate-rich shale in the Jiyang Depression were analyzed, and the organic matter abundance, reservoir properties, and oil-bearing properties of different laminae were compared. Typical shale storage-seepage structures were classified, and the mobility of oil in different types of shale storage-seepage structure was compared. The results show that the repeated superposition of mud laminae and calcite laminae are the main layer structure of carbonate-rich shales. The calcite laminae are divided into micritic calcite laminae, sparry calcite laminae and fibrous calcite vein. The mud-rich laminae are the main contributor to the organic matter abundance and porosity of shale, with the best hydrocarbon generation potential, reservoir capacity, and oil-bearing property. The micritic calcite laminae also have relatively good hydrocarbon generation potential, reservoir capacity and oil-bearing property. The sparry calcite laminae and fibrous calcite vein have good permeability and conductivity. Four types of shale storage-seepage structure are developed in the carbonate-rich shale, and the mobility of oil in each type of storage-seepage structure is in descending order: sparry calcite laminae enriched shale storage-seepage structure, mixed calcite laminae enriched shale storage-seepage structure, fibrous calcite vein enriched shale storage-seepage structure, and micritic calcite laminae enriched shale storage-seepage structure. The exploration targets of carbonate-rich shale in the Jiyang Depression Shahejie Formation are different in terms of storage-seepage structure at different thermal evolution stages.
基金supported by the Foundation of State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development(No.G5800-16-ZS-KFZY002)the NSFC and Sino PEC Joint Key Project(No.U1663207)the National Natural Science Foundation of China(No.41404090)
文摘The preferred orientation of clay minerals dominates the intrinsic anisotropy of shale. We introduce the clay lamination (CL) parameter to the Backus averaging method to describe the intrinsic shale anisotropy induced by the alignment of clay minerals. Then, we perform the inversion of CL and the Thomsen anisotropy parameters. The direct measurement of anisotropy is difficult because of the inability to measure the acoustic velocity in the vertical direction in boreholes and instrument limitations. By introducing the parameter CL, the inversion method provides reasonable estimates of the elastic anisotropy in the Longmaxi shale. The clay content is weakly correlated with the CL parameter. Moreover, the parameter CL is abnormally high at the bottom of the Longmaxi and Wufeng Formations, which are the target reservoirs. Finally, we construct rock physics templates to interpret well logging and reservoir properties.
基金Supported by National Major Research Program for Science and Technology of China(2017ZX05009-002)the National Natural Science Foundation of China(41772090)Postdoctoral Science Foundation of China(2020M680624)。
文摘This paper systematically discusses the multiple source characteristics and formation mechanisms of carbonate-rich fine-grained sedimentary rocks through the analysis of material source and rock formation.The hydrocarbon accumulation characteristics of carbonate-rich fine-grained sedimentary rocks are also summarized.The results show that the main reason for the enrichment of fine-grained carbonate materials in rift lake basins was the supply of multiple material sources,including terrestrial material input,formation of intrabasinal authigenic carbonate,volcanic-hydrothermal material feeding and mixed source.The development of carbonate bedrock in the provenance area controlled the filling scale of carbonate materials in rift lake basins.The volcanic-hydrothermal activity might provide an alkaline fluid to the lake basins to strengthen the material supply for the formation of carbonate crystals.Authigenic carbonate crystals induced by biological processes were the main source of long-term accumulation of fine-grained carbonate materials in the lake basins.Carbonate-rich fine-grained sedimentary rocks with multiple features were formed through the interaction of physical,biochemical and chemical processes during the deposition and post-deposition stages.The source and sedimentary origin of the fine-grained carbonate rock controlled the hydrocarbon accumulation in it.In the multi-source system,the types of"sweet spots"of continental shale oil and gas include endogenous type,terrigenous type,volcanic-hydrothermal type and mixed source type.