期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Forest aboveground biomass estimates in a tropical rainforest in Madagascar: new insights from the use of wood specific gravity data 被引量:2
1
作者 Tahiana Ramananantoandro Herimanitra P.Rafidimanantsoa Miora F.Ramanakoto 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第1期47-55,共9页
To generate carbon credits under the Reducing Emissions from Deforestation and forest Degradation program(REDD+), accurate estimates of forest carbon stocks are needed. Carbon accounting efforts have focused on car... To generate carbon credits under the Reducing Emissions from Deforestation and forest Degradation program(REDD+), accurate estimates of forest carbon stocks are needed. Carbon accounting efforts have focused on carbon stocks in aboveground biomass(AGB).Although wood specific gravity(WSG) is known to be an important variable in AGB estimates, there is currently a lack of data on WSG for Malagasy tree species. This study aimed to determine whether estimates of carbon stocks calculated from literature-based WSG values differed from those based on WSG values measured on wood core samples. Carbon stocks in forest biomass were assessed using two WSG data sets:(i) values measured from 303 wood core samples extracted in the study area,(ii) values derived from international databases. Results suggested that there is difference between the field and literaturebased WSG at the 0.05 level. The latter data set was on average 16 % higher than the former. However, carbon stocks calculated from the two data sets did not differ significantly at the 0.05 level. Such findings could be attributed to the form of the allometric equation used which gives more weight to tree diameter and tree height than to WSG. The choice of dataset should depend on the level of accuracy(Tier II or III) desired by REDD+. As higher levels of accuracy are rewarded by higher prices, speciesspecific WSG data would be highly desirable. 展开更多
关键词 Biomass estimates Carbon stocks Data quality Madagascar REDD+ wood specific gravity
下载PDF
Bio-Inspired Microwave Modulator for High-Temperature Electromagnetic Protection,Infrared Stealth and Operating Temperature Monitoring 被引量:2
2
作者 Xuan Yang Yuping Duan +4 位作者 Shuqing Li Huifang Pang Lingxi Huang Yuanyuan Fu Tongmin Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第2期124-135,共12页
High-temperature electromagnetic(EM) protection materials integrated of multiple EM protection mechanisms and functions are regarded as desirable candidates for solving EM interference over a wide temperature range.In... High-temperature electromagnetic(EM) protection materials integrated of multiple EM protection mechanisms and functions are regarded as desirable candidates for solving EM interference over a wide temperature range.In this work,a novel microwave modulator is fabricated by introducing carbonyl iron particles(CIP)/resin into channels of carbonized wood(C-wood).Innovatively,the spaced arrangement of two microwave absorbents not only achieves a synergistic enhancement of magnetic and dielectric losses,but also breaks the translational invariance of EM characteristics in the horizontal direction to obtain multiple phase discontinuities in the frequency range of 8.2-18.0 GHz achieving modulation of reflected wave radiation direction.Accordingly,CIP/C-wood microwave modulator demonstrates the maximum effective bandwidth of 5.2 GHz and the maximum EM protection efficiency over 97% with a thickness of only 1.5 mm in the temperature range 298-673 K.Besides,CIP/C-wood microwave modulator shows stable and low thermal conductivities,as well as monotonic electrical conductivity-temperature characteristics,therefore it can also achieve thermal infrared stealth and working temperature monitoring in wide temperature ranges.This work provides an inspiration for the design of high-temperature EM protection materials with multiple EM protection mechanisms and functions. 展开更多
关键词 Microwave modulator Electromagnetic protection High temperatures Temperature monitoring Carbonized wood
下载PDF
Smoldering charcoal detection in forest soil by multiple CO sensors
3
作者 Chunmei Yang Yuning Hou +2 位作者 Tongbin Liu Yaqiang Ma Jiuqing Liu 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期1791-1802,共12页
Cleaning up residual fires is an important part of forest fire management to avoid the loss of forest resources caused by the recurrence of a residual fire.Existing residual fire detection equipment is mainly infrared... Cleaning up residual fires is an important part of forest fire management to avoid the loss of forest resources caused by the recurrence of a residual fire.Existing residual fire detection equipment is mainly infrared temperature detection and smoke identification.Due to the isolation of ground,temperature and smoke characteristics of medium and large smoldering charcoal in some forest soils are not obvious,making it difficult to identify by detection equipment.CO gas is an important detection index for indoor smoldering fire detection,and an important identification feature of hidden smoldering ground fires.However,there is no research on locating smoldering fires through CO detection.We studied the diffusion law of CO gas directly above covered smoldering charcoal as a criterion to design a detection device equipped with multiple CO sensors.According to the motion decomposition search algorithm,the detection device realizes the function of automatically searching for smoldering charcoal.Experimental data shows that the average CO concentration over the covered smoldering charcoal decreases exponentially with increasing height.The size of the search step is related to the reliability of the search algorithm.The detection success corresponding to the small step length is high but the search time is lengthy which can lead to search failure.The introduction of step and rotation factors in search algorithm improves the search efficiency.This study reveals that the average ground CO concentration directly above smoldering charcoal in forests changes with height.Based on this law,a CO gas sensor detection device for hidden smoldering fires has been designed,which enriches the technique of residual fire detection. 展开更多
关键词 Forest fi res Smoldering fire detection wood carbon smoldering CO sensor
下载PDF
Solar evaporation for simultaneous oil-water separation and electricity generation with Janus wood-based absorbers
4
作者 Yue Yang Ze Fu Qi Zhang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第2期13-23,共11页
Oily wastewater from ocean oil spills endangers marine ecosystems and human health. Therefore, developing an effective and sustainable solution for separating oil-water mixtures is urgent. Interfacial solar phototherm... Oily wastewater from ocean oil spills endangers marine ecosystems and human health. Therefore, developing an effective and sustainable solution for separating oil-water mixtures is urgent. Interfacial solar photothermal evaporation is a promising approach for the complete separation of two-phase mixtures using only solar energy. Herein, we report a carbonized wood-based absorber with Janus structure of comprising a hydrophobic top-layer and an oleophobic bottom-layer for simultaneous solar-driven oil-water separation and electricity generation. Under sunlight irradiation, the rapid evaporation of seawater will induce a separation of oil-water mixtures, and cause a high salt concentration region underlying the interface, while the bottom “bulk water” maintains in a low salt concentration, thus forming a salinity gradient. Electricity can be generated by salinity gradient power. Therefore, oil-water separation efficiency of > 99% and derived extra electricity power of ~0.1 W/m2 is achieved under solar radiation, demonstrating the feasibility of oil-water separation and electricity production synchronously directly using solar energy. This work provides a green and cost-effective path for the separation of oil-water mixtures. 展开更多
关键词 Oily wastewater Carbonized wood Salinity gradient Electricity generation Solar irradiation
原文传递
An innovative wood derived carbon-carbon nanotubes-pyrolytic carbon composites with excellent electrical conductivity and thermal stability
5
作者 Bihan Zhang Leilei Zhang +1 位作者 Zhongkai Wang Qian Gao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第8期22-28,共7页
The functionality of wood has evolved with time to adapt to the emerging needs of society.Carbonized wood-based composites have attracted tremendous interest in the fields of aerospace,military power,electric power,an... The functionality of wood has evolved with time to adapt to the emerging needs of society.Carbonized wood-based composites have attracted tremendous interest in the fields of aerospace,military power,electric power,and system electronic devices,especially at high temperatures.Nevertheless,their electrical conductivity and thermal stability characteristics are still far from satisfactory.Herein,an innova-tive wood-derived carbon-carbon nanotubes-pyrolytic carbon composites(WDC-CNTs-PyCs)is successfully fabricated by chemical vapor deposition and chemical vapor infiltration.The combination of wood-derived carbon(WDC),carbon nanotubes(CNTs),and pyrolytic carbon(PyC)has never been reported in any previous work.We have innovatively introduced PyC into the WDC by chemical vapor infiltration.CNTs promote the continuous deposition of PyC to form dense structures.WDC-CNTs-PyC demonstrates significant compressive strength(85.4 MPa)and excellent electrical conductivity(632 S cm^(-1)).The weight loss rate of WDC-CNTs-PyC is 6%after heating at 500℃ for 10 min in the air atmosphere.Furthermore,WDC-CNTs-PyC could resist oxyacetylene ablation above 2300℃ for 15 s.With excellent electrical conductivity,outstanding thermal stability,and mechanical properties,WDC-CNTs-PyC opens up a surprising strategy for efficiently fabricating various high-performance electronic device composites that could be used in high-temperature fields. 展开更多
关键词 wood derived carbon Carbon nanotubes Pyrolytic carbon Electrical conductivity Thermal stability Compressive strength
原文传递
Characteristics of nanoparticles emitted from burning of biomass fuels 被引量:5
6
作者 Mitsuhiko Hata Jiraporn Chomanee +5 位作者 Thunyapat Thongyen Linfa Bao Surajit Tekasakul Perapong Tekasakul Yoshio Otani Masami Furuuchi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第9期1913-1920,共8页
The characteristics of the particles of the smoke that is emitted from the burning ofbiomass fuels were experimentally investigated using a laboratory-scale tube furnace and different types of biomass fuels: rubber w... The characteristics of the particles of the smoke that is emitted from the burning ofbiomass fuels were experimentally investigated using a laboratory-scale tube furnace and different types of biomass fuels: rubber wood, whole wood pellets and rice husks. Emitted amounts of particles, particle-bound polycyclic aromatic hydrocarbons (PAHs) and water-soluble organic carbon (WSOC) are discussed relative to the size of the emitted particles, ranging to as small as nano-size (〈70 nm), and to the rate of heating rate during combustion, differential thermal analysis (DTA) and thermogravimetric analysis (TG) techniques were used to examine the effect of heating rate and biomass type on combustion behaviors relative to the characteristics of particle emissions. In the present study, more than 30% of the smoke particles from the burning ofbiomass fuel had a mass that fell within a range of 〈 100 nm. Particles smaller than 0.43 μm contributed greatly to the total levels of toxic PAHs and WSOC. The properties of these particles were influenced by the fuel component, the combustion conditions, and the particle size. Although TC--DTA results indicated that the heating rate in a range of 10-20℃did not show a significant effect on the combustion properties, there was a slight increase in the decomposition temperature as heating rate was increased. The nano-size particles had the smallest fraction of particle mass and particle-bound PAHs, but nonetheless these particles registered the largest fraction of particle-bound WSOC. 展开更多
关键词 wood biomassNano-particlesPolycyclic aromatic hydrocarbonsWater-soluble organic carbon
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部