In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion ero...In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.展开更多
Through the fast freeze-thaw cycle test,accelerated carbonation test,and natural carbonation test,the durability performance of lining concrete under combined action of freeze-thaw cycle and carbonation were studied.T...Through the fast freeze-thaw cycle test,accelerated carbonation test,and natural carbonation test,the durability performance of lining concrete under combined action of freeze-thaw cycle and carbonation were studied.The experimental results indicate that freeze-thaw cycle apparently accelerates the process of concrete carbonation and carbonation deteriorates the freeze resistance of concrete.Under the combined action of freeze-thaw cycle and carbonation,the durability of lining concrete decreases.The carbonation depth of lining concrete at tunnel openings under freeze-thaw cycles and tunnel condition was predicted.For the high performance concrete with proposed mix ratio,the lining concrete tends to be unsafe because predicted carbonation depth exceeds the thickness of reinforced concrete protective coating.Adopting other measurements simultaneously to improve the durability of lining concrete at the tunnel openings is essential.展开更多
Qingdao Jiaozhou Bay subsea tunnel is the second self-built tunnel in China with the designed service life over 100 years.The durability of lining concrete are one of an important factors to determinate the service li...Qingdao Jiaozhou Bay subsea tunnel is the second self-built tunnel in China with the designed service life over 100 years.The durability of lining concrete are one of an important factors to determinate the service life of tunnel.Considering the main environmental loads and mechanical loads of subsea tunnel,the durability properties of lining concrete under combined action of compressive load and carbonation has been studied through the critical compressive load test,accelerated carbonation test,natural carbonation test and capillary suction test.The tests results show that critical compressive load apparently accelerates the carbonation and deteriorates the anti-permeability of concrete.Under the combined action of critical compressive load and carbonation,the durability of lining concrete decreases.Based on the carbonization life criteria and research results,for the high-performance concrete with proposed mix ratio,the predicted service life of lining concrete for Jiaozhou bay subsea tunnel is about 80 years which fails to reach the required service life.It is necessary to adopt other measurements simultaneously to improve the durability of lining concrete.展开更多
The shajiang river bridge on the appearance test, concrete rebound detection, concrete cover depth detection, concrete carbonation depth detection, concrete chlorine ion content detection, and the detection results in...The shajiang river bridge on the appearance test, concrete rebound detection, concrete cover depth detection, concrete carbonation depth detection, concrete chlorine ion content detection, and the detection results in statistics and analysis. Based on the bridge of the service the atmospheric environment parameters and testing data, the paper calculates and analyzes the main stress components the carbonation bridge reliability index and remaining life of carbide, assessing the bridge for the service life and reinforcement maintenance and offer the scientific basis.展开更多
Differences and similarities of durability design for concrete bridges in Chinese-code and Eurocode are identified and discussed. Exposure environment classes and regulations of the minimum concrete cover and strength...Differences and similarities of durability design for concrete bridges in Chinese-code and Eurocode are identified and discussed. Exposure environment classes and regulations of the minimum concrete cover and strength of the two codes are compared and analyzed. Numerical calculations for predicting the durable life of bridges related to carbonization and chlorides corrosion (marine and de-icing) are conducted. The results show that provisions in the two codes can satisfy the durability requirements under carbonization whereas they cannot guarantee the durability for bridges in spray and splash zones. Enhancing the waterproof capacity and reducing the frequent use of de-icing agents are vital to improving the bridge durability. Some recommendations for upgrading the durability are also included.展开更多
A stochastic finite element computational methodology for probabilistic durability assessment of deteriorating reinforced concrete(RC) bridges by considering the time-and space-dependent variabilities is presented.F...A stochastic finite element computational methodology for probabilistic durability assessment of deteriorating reinforced concrete(RC) bridges by considering the time-and space-dependent variabilities is presented.First,finite element analysis with a smeared cracking approach is implemented.The time-dependent bond-slip relationship between steel and concrete,and the stress-strain relationship of corroded steel bars are considered.Secondly,a stochastic finite element-based computational framework for reliability assessment of deteriorating RC bridges is proposed.The spatial and temporal variability of several parameters affecting the reliability of RC bridges is considered.Based on the data reported by several researchers and from field investigations,the Monte Carlo simulation is used to account for the uncertainties in various parameters,including local and general corrosion in rebars,concrete cover depth,surface chloride concentration,chloride diffusion coefficient,and corrosion rate.Finally,the proposed probabilistic durability assessment approach and framework are applied to evaluate the time-dependent reliability of a girder of a RC bridge located on the Tianjin Binhai New Area in China.展开更多
The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a ...The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load.展开更多
Oil Palm Shell (OPS) concrete can be used in different fields of construction. To determine more accurately the fields of application, it is important to know and understand the behaviour of OPS concrete over<span ...Oil Palm Shell (OPS) concrete can be used in different fields of construction. To determine more accurately the fields of application, it is important to know and understand the behaviour of OPS concrete over<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> long term and when it is in aggressive environments. This paper presents the results of studies conducted on the durability of OPS concrete. Water absorption capacity, electrical resistivity and apparent diffusion of chloride ions have been measured on different concrete samples. In addition, the behaviour of OPS concretes to carbonation was studied in an environment rich in carbon dioxide. Results show that OPS concrete ha</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> an absorptivity of 0.97 kg/m</span><sup><span style="font-family:Verdana;">2</span></sup></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">h</span><sup><span style="font-family:Verdana;">1/2</span></sup><span style="font-family:Verdana;">, an electrical resistivity of 64.37 Ω</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">m and an apparent diffusion coefficient of chloride ions of 3.84</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> × </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">10</span><sup><span style="font-family:Verdana;">-12</span></sup><span style="font-family:Verdana;"> m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/s after 90 days. All these results of OPS concrete are very close to those of concrete with normal aggregate and other lightweight concrete</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> which mean OPS concretes have globally good properties with regard to durability</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span>展开更多
对9种不同掺量矿物掺合料条件下的不同配合比混凝土的耐久性能进行了研究。研究发现:随着矿物掺合料的掺入比例不断增加,由于混凝土内部孔结构和级配得到较为有效改善,混凝土的氯离子扩散系数不断减小,混凝土抵抗氯离子渗透能力逐渐增强...对9种不同掺量矿物掺合料条件下的不同配合比混凝土的耐久性能进行了研究。研究发现:随着矿物掺合料的掺入比例不断增加,由于混凝土内部孔结构和级配得到较为有效改善,混凝土的氯离子扩散系数不断减小,混凝土抵抗氯离子渗透能力逐渐增强,抗碳化能力不断降低,在混凝土的水胶比较大时效果明显。当水胶比为0.26,粉煤灰掺量为50%时,C70混凝土的氯离子扩散系数最小,达到0.403/(10-8 cm 2/s);粉煤灰掺量为40%时,C70混凝土的抗碳化性能最强,达到1.0 mm。展开更多
基金This work is supported by the Zhuhai Science and Technology Project(ZH22036203200015PWC)the Open Foundation of State Key Laboratory of Subtropical Building Science(2022ZB20).
文摘In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.
基金Funded by the National Key Basic Research and Development Plans-973 Plans(2009CB623203)the Key Project of National Natural Science Foundation of China(50739001)+1 种基金the National Natural Science Foundation of China (50878109)the Specialized Construct Fund for Taishan Scholars
文摘Through the fast freeze-thaw cycle test,accelerated carbonation test,and natural carbonation test,the durability performance of lining concrete under combined action of freeze-thaw cycle and carbonation were studied.The experimental results indicate that freeze-thaw cycle apparently accelerates the process of concrete carbonation and carbonation deteriorates the freeze resistance of concrete.Under the combined action of freeze-thaw cycle and carbonation,the durability of lining concrete decreases.The carbonation depth of lining concrete at tunnel openings under freeze-thaw cycles and tunnel condition was predicted.For the high performance concrete with proposed mix ratio,the lining concrete tends to be unsafe because predicted carbonation depth exceeds the thickness of reinforced concrete protective coating.Adopting other measurements simultaneously to improve the durability of lining concrete at the tunnel openings is essential.
基金Funded by the National Key Basic Research and Development Plans-973 Plans(2009CB623203)the Key Project of National Natural Science Foundation of China (50739001)+2 种基金the National Natural Science Foundation of China (50878109)the National Key Technology R & D Program (2007BAB27B03)the Education Ministry Doctor Foundation of China (20070429001)
文摘Qingdao Jiaozhou Bay subsea tunnel is the second self-built tunnel in China with the designed service life over 100 years.The durability of lining concrete are one of an important factors to determinate the service life of tunnel.Considering the main environmental loads and mechanical loads of subsea tunnel,the durability properties of lining concrete under combined action of compressive load and carbonation has been studied through the critical compressive load test,accelerated carbonation test,natural carbonation test and capillary suction test.The tests results show that critical compressive load apparently accelerates the carbonation and deteriorates the anti-permeability of concrete.Under the combined action of critical compressive load and carbonation,the durability of lining concrete decreases.Based on the carbonization life criteria and research results,for the high-performance concrete with proposed mix ratio,the predicted service life of lining concrete for Jiaozhou bay subsea tunnel is about 80 years which fails to reach the required service life.It is necessary to adopt other measurements simultaneously to improve the durability of lining concrete.
文摘The shajiang river bridge on the appearance test, concrete rebound detection, concrete cover depth detection, concrete carbonation depth detection, concrete chlorine ion content detection, and the detection results in statistics and analysis. Based on the bridge of the service the atmospheric environment parameters and testing data, the paper calculates and analyzes the main stress components the carbonation bridge reliability index and remaining life of carbide, assessing the bridge for the service life and reinforcement maintenance and offer the scientific basis.
文摘Differences and similarities of durability design for concrete bridges in Chinese-code and Eurocode are identified and discussed. Exposure environment classes and regulations of the minimum concrete cover and strength of the two codes are compared and analyzed. Numerical calculations for predicting the durable life of bridges related to carbonization and chlorides corrosion (marine and de-icing) are conducted. The results show that provisions in the two codes can satisfy the durability requirements under carbonization whereas they cannot guarantee the durability for bridges in spray and splash zones. Enhancing the waterproof capacity and reducing the frequent use of de-icing agents are vital to improving the bridge durability. Some recommendations for upgrading the durability are also included.
基金The National Natural Science Foundation of China (No.50708065)the National High Technology Research and Development Program of China (863 Program) (No. 2007AA11Z113)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20070056125)
文摘A stochastic finite element computational methodology for probabilistic durability assessment of deteriorating reinforced concrete(RC) bridges by considering the time-and space-dependent variabilities is presented.First,finite element analysis with a smeared cracking approach is implemented.The time-dependent bond-slip relationship between steel and concrete,and the stress-strain relationship of corroded steel bars are considered.Secondly,a stochastic finite element-based computational framework for reliability assessment of deteriorating RC bridges is proposed.The spatial and temporal variability of several parameters affecting the reliability of RC bridges is considered.Based on the data reported by several researchers and from field investigations,the Monte Carlo simulation is used to account for the uncertainties in various parameters,including local and general corrosion in rebars,concrete cover depth,surface chloride concentration,chloride diffusion coefficient,and corrosion rate.Finally,the proposed probabilistic durability assessment approach and framework are applied to evaluate the time-dependent reliability of a girder of a RC bridge located on the Tianjin Binhai New Area in China.
基金The National Natural Science Foundation of China(No.50608013)Special Prophase Project on Basic Research of the National Department of Science and Technology(No.2004CCA04100)
文摘The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load.
文摘Oil Palm Shell (OPS) concrete can be used in different fields of construction. To determine more accurately the fields of application, it is important to know and understand the behaviour of OPS concrete over<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> long term and when it is in aggressive environments. This paper presents the results of studies conducted on the durability of OPS concrete. Water absorption capacity, electrical resistivity and apparent diffusion of chloride ions have been measured on different concrete samples. In addition, the behaviour of OPS concretes to carbonation was studied in an environment rich in carbon dioxide. Results show that OPS concrete ha</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> an absorptivity of 0.97 kg/m</span><sup><span style="font-family:Verdana;">2</span></sup></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">h</span><sup><span style="font-family:Verdana;">1/2</span></sup><span style="font-family:Verdana;">, an electrical resistivity of 64.37 Ω</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">·</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">m and an apparent diffusion coefficient of chloride ions of 3.84</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> × </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">10</span><sup><span style="font-family:Verdana;">-12</span></sup><span style="font-family:Verdana;"> m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">/s after 90 days. All these results of OPS concrete are very close to those of concrete with normal aggregate and other lightweight concrete</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> which mean OPS concretes have globally good properties with regard to durability</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span>
文摘对9种不同掺量矿物掺合料条件下的不同配合比混凝土的耐久性能进行了研究。研究发现:随着矿物掺合料的掺入比例不断增加,由于混凝土内部孔结构和级配得到较为有效改善,混凝土的氯离子扩散系数不断减小,混凝土抵抗氯离子渗透能力逐渐增强,抗碳化能力不断降低,在混凝土的水胶比较大时效果明显。当水胶比为0.26,粉煤灰掺量为50%时,C70混凝土的氯离子扩散系数最小,达到0.403/(10-8 cm 2/s);粉煤灰掺量为40%时,C70混凝土的抗碳化性能最强,达到1.0 mm。