Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management optio...Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management options.How carbon density and sequestration in various Cunninghamia lanceolata forests,extensively cultivated for timber production in subtropical China,vary with biodiversity,forest structure,environment,and cultural factors remain poorly explored,presenting a critical knowledge gap for realizing carbon sequestration supply potential through management.Based on a large-scale database of 449 permanent forest inventory plots,we quantified the spatial-temporal heterogeneity of aboveground carbon densities and carbon accumulation rates in Cunninghamia lanceolate forests in Hunan Province,China,and attributed the contributions of stand structure,environmental,and management factors to the heterogeneity using quantile age-sequence analysis,partial least squares path modeling(PLS-PM),and hot-spot analysis.The results showed lower values of carbon density and sequestration on average,in comparison with other forests in the same climate zone(i.e.,subtropics),with pronounced spatial and temporal variability.Specifically,quantile regression analysis using carbon accumulation rates along an age sequence showed large differences in carbon sequestration rates among underperformed and outperformed forests(0.50 and 1.80 Mg·ha^(-1)·yr^(-1)).PLS-PM demonstrated that maximum DBH and stand density were the main crucial drivers of aboveground carbon density from young to mature forests.Furthermore,species diversity and geotopographic factors were the significant factors causing the large discrepancy in aboveground carbon density change between low-and high-carbon-bearing forests.Hotspot analysis revealed the importance of culture attributes in shaping the geospatial patterns of carbon sequestration.Our work highlighted that retaining largesized DBH trees and increasing shade-tolerant tree species were important to enhance carbon sequestration in C.lanceolate forests.展开更多
The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three t...The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s^-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al(Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s^-1 and 0.43°C·s^-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.展开更多
Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two question...Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant.展开更多
Mangroves can not only provide multiple ecosystem service functions,but are also efficient carbon producers,capturers,and sinks.The estimation of the organic carbon accumulation rate(OCAR)in mangrove sediments is fund...Mangroves can not only provide multiple ecosystem service functions,but are also efficient carbon producers,capturers,and sinks.The estimation of the organic carbon accumulation rate(OCAR)in mangrove sediments is fundamental for elucidating the role of mangroves in the global carbon budget.In particular,understanding the past changes in the OCAR in mangrove sediments is vital for predicting the future role of mangroves in the rapidly changing environment.In this study,three dated sediment cores from interior and fringe of mangroves in the Yingluo Bay,China,were used to reconstruct the spatiotemporal variations of the calculated OCAR since 1900 in this area.The increasing OCAR in the mangrove interior was attributed to mangrove flourishment induced by climate change characterized by the rising temperature.However,in the mangrove fringe,the strengthening hydrodynamic conditions under the sea level rise were responsible for the decreasing OCAR,particularly after the1940 s.Furthermore,the duration of inundation by seawater was the primary factors controlling the spatial variability of the OCAR from the mangrove fringe to interior,while the strengthened hydrodynamic conditions after the 1940 s broke this original pattern.展开更多
In this paper, a new carbon fiber based cathode — a low-outgassing-rate carbon fiber array cathode — is investigated experimentally, and the experimental results are compared with those of a polymer velvet cathode. ...In this paper, a new carbon fiber based cathode — a low-outgassing-rate carbon fiber array cathode — is investigated experimentally, and the experimental results are compared with those of a polymer velvet cathode. The carbon fiber array cathode is constructed by inserting bunches of carbon fibers into the cylindrical surface of the cathode. In experiment, the diode base pressure is maintained at 1×10^(-2) Pa–2×10^(-2) Pa, and the diode is driven by a compact pulsed power system which can provide a diode voltage of about 100 kV and pulse duration of about 30 ns at a repetition rate of tens of Hz.Real-time pressure data are measured by a magnetron gauge. Under the similar conditions, the experimental results show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode and that this carbon fiber array cathode has better shot-to-shot stability than the velvet cathode. Hence, this carbon fiber array cathode is demonstrated to be a promising cathode for the radial diode, which can be used in magnetically insulated transmission line oscillator(MILO) and relativistic magnetron(RM).展开更多
Three-North Shelterbelt Forest (TSF) program, is one of six key forestry programs and has a 73-year construction period, from 1978 to 2050. Quantitative analysis of the carbon sequestration of shrubs in this region ...Three-North Shelterbelt Forest (TSF) program, is one of six key forestry programs and has a 73-year construction period, from 1978 to 2050. Quantitative analysis of the carbon sequestration of shrubs in this region is important for understanding the overall function of carbon sequestration of the forest and other terrestrial ecosystems in China. This study investigated the distribution area of shrubland in the TSF region based on remote sensing images in 1978 and 2008, and calculated the carbon density of shrubland in combination with the field investigation and previous data from published papers. The carbon sequestration quantity and rate from 1978 to 2008 was analyzed for four sub-regions and different types of shrubs in the TSF region. The results revealed that: 1) The area of shrubland in the study area and its four sub-regions increased during the past thirty years. The area of shrubland for the whole region in 2008 was 1.2 × 10^7 ha, 72.8% larger than that in 1978. The Inner Mongolia-Xinjiang Sub-region was the largest shrubland distribution area, while the highest coverage rate was found in the North China Sub-region. 2) In decreasing order of their carbon sequestration, the four types of shrubs considered in this study were Hippophae rhamnoides, Caragana spp., Haloxylon ammodendron and Vitex negundo vat. heterophylla. The carbon sequestration of/-/, rhamnoides, with a maximum mean carbon density of 16.5 Mg C/ha, was significantly higher than that of the other three species. 3) The total carbon sequestration of shrubland in the study region was 4.5 x 107 Mg C with a mean annual carbon sequestration of 1.5× 10^6 Mg C. The carbon density in the four sub-regions decreased in the following order: the Loess Plateau Sub-region, the North China Sub-region, the Northeast China Sub-region and the Inner Mongolia-Xinjiang Sub-region. The paucity of studies and data availability on the large-scale carbon sequestration of shrub species suggests this study provides a baseline reference for future research in this area.展开更多
The redox sensitive elements, molybdenum (Mo) and uranium (U), in marine sediments from the latest Permian Dalong (大隆) Formation at the Shangsi (上寺) Section, Northeast Sichnan (四川), South China, were a...The redox sensitive elements, molybdenum (Mo) and uranium (U), in marine sediments from the latest Permian Dalong (大隆) Formation at the Shangsi (上寺) Section, Northeast Sichnan (四川), South China, were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine their response to a range of redox conditions, and to estimate the organic carbon burial rate. On the basis of the correlation between anthigenic Mo abundance and organic carbon content in modern oceans, the organic carbon burial rates were calculated for the rocks at Dalong Formation, ranging from 0.48-125.83 mmol/(m^2.d), which shows a larger range than the mineralization rate of organic carbon at the continental margins (1.6-4.23 mmol/(m^2-d)). The Zr-normalized Mo and U abundances show large fluctuations in the entire section. The maxima of Zr-normalized Mo abundance and thus the maxima of the organic carbon burial rates were observed at the interval between the 155th and 156th beds (404-407 m above the base of Middle Permian). A decrease (the minimum) in U/Mo ratios is present in this interval. It is speculated that the oxygen-limited conditions and ultimately anoxia or euxinia may develop within this depth interval. In contrast, an enhanced enrichment of Zr-normalized U abundance is found, in association with less enrichment in Zr-normalized Mo abundance in the interval from the 151st to 154th beds (395-404 m above the base of Middle Permian), inferring the dominance of a suboxic/anoxic depositional condition (denitrifying condition), or without free H2S. The presence of small quantities of dissolved oxygen may have caused the solubilization and loss of Mo from sediments. It is proposed that the multiple cycles of abrupt oxidation and reduction due to the upwelling at this interval lead to the enhanced accumulation of authigenic U, but less enrichment of Mo. A decrease in the contents of U, Mo, and TOC is found above the 157th bed (407 m above the base of Middle Permian), in association with the enhanced U/Mo ratio, suggesting the overall oxic conditions at the end of the Dalong Formation.展开更多
Limestone can be used for CO_2 capture and sequestration(CCS) in flue gas effectively. However, its CCS capability will dramatically decline after several cycles due to the surface "sintering". In this work,...Limestone can be used for CO_2 capture and sequestration(CCS) in flue gas effectively. However, its CCS capability will dramatically decline after several cycles due to the surface "sintering". In this work, the limestone was modified with palygorskite to reduce sintering phenomenon between the absorbent particles during the CCS process and the carbonation rate of the limestone can be enhanced effectively. Palygorskite is a natural mineral with nano-fibrous structure which can reduce the mutual contact of limestone particles during the CCS process. The results were detected by TGA, SEM, MIP, FTIR and particle size analyzer respectively. The best CO_2 capture performance of modified absorbent was 13.11% improvement with only 5 wt% palygorskite added during the CCS process after 15 cycles compared with natural absorbent. It was found that excellent microscopic structures of absorbent modified with palygorskite was created, and the surface sintering was postponed leading to CO_2 capture performance enhanced under the same conditions.展开更多
Sediment carbon sequestration plays an essential role in mitigating atmospheric CO2 increases and the subsequently global greenhouse effect. To clarify the late Quaternary strata and carbon burial records in YeUow Riv...Sediment carbon sequestration plays an essential role in mitigating atmospheric CO2 increases and the subsequently global greenhouse effect. To clarify the late Quaternary strata and carbon burial records in YeUow River delta (YRD), detailed analysis of benthic foraminifera, total carbon (TC), organic carbon (Corg), sedimentary characteristics and moisture contents of sediments, was performed on core ZK3, 30.3 m in length and obtained from YRD in 2007. Eight depositional units (designated U1-U8 in ascending order) were identified. A comprehensive analysis method of historical geography and sedimentary geology was used to de- termine the precise depositional ages of the modem Yellow River delta (MYRD), from which pre-MYRD ages were deduced. The results indicates that the maximum burial rates of TC, inorganic carbon (IC) and Corg occurred in the delta front (U5), and the mini- mum in the shallow sea (U3). Remarkable high sedimentation rates in the MYRD are responsible for burial efficiency of carbon, with an average rate of Corg burial reaching 2087±251 g(m2yr)-1, and that of IC reaching 13741±808g(m2yr)-1, which are much higher than those of other regions with high contents of Corg. Therefore, YRD has a significant burial efficiency for carbon sequestration.展开更多
Accelerated carbonation experiments about the development of carbonation rates of ordinary Portland cement concrete under different artificial climates were carried out. Six water cement ratios and six climate conditi...Accelerated carbonation experiments about the development of carbonation rates of ordinary Portland cement concrete under different artificial climates were carried out. Six water cement ratios and six climate condition combinations of temperature and relative humidity were used. Results indicate that changes of concrete carbonation rate with environmental temperature agree the Arrhenius law well, which suggests concrete carbonation rate has obvious dependence on temperature. The higher the temperature is, the more quickly the concrete carbonates, and at the same time it is also affected by environmental relative humidity. Thereafter, the apparent activation energy Ea of concrete carbonation reaction was obtained, ranging from 16.8 to 20.6 kJ/mol corresponding 0.35-0.74 water cement ratio, and lower water cement ratio will cause the apparent activation energy increase. Concrete carbonation rates will increase 1.1-1.69 times as temperature increase every 10 ℃ at the temperature range of 10 to 60 ℃.展开更多
The single influence of capillary porosity and coupling effects of absolute basicity and capillary porosity on concrete carbonation were investigated. The experimental results showed that carbonation rate of concrete ...The single influence of capillary porosity and coupling effects of absolute basicity and capillary porosity on concrete carbonation were investigated. The experimental results showed that carbonation rate of concrete at a given absolute basicity (AB) increased moderately with the increase of the porosity ranging from 6.2% to 9.25%, and increased rapidly with porosity from 9.25% to 12.8%.The coupling effect mainly embodied in disappeared mutation point of capillary porosity, and the distributing regions of carbonation depth were clearly partitioned in the coupling influence of absolute basicity and capillary porosity. A design method on carbonation related durability of concrete based on the coupling effects was proposed.展开更多
Individual coal seams formed in paleo-peatlands represent sustained periods of terrestrial carbon accumulation and a key environmental indicator attributed to this record is the rate of carbon accumulation.Determining...Individual coal seams formed in paleo-peatlands represent sustained periods of terrestrial carbon accumulation and a key environmental indicator attributed to this record is the rate of carbon accumulation.Determining the rate of carbon accumulation requires a measure of time contained within the coal.This study aimed to determine this rate via the identification of Milankovitch orbital cycles in the coals.The geophysical log is an ideal paleoclimate proxy and has been widely used in the study of sedimentary records using spectral analysis.Spectral analyses of geophysical log from thick coal seams can be used to identify the Milankovitch cycles and to calculate the period of the coal deposition.By considering the carbon loss during coalification,the long-term average carbon accumulation rate and net primary productivity(NPP)of paleo-peatlands in coal seams can be obtained.This review paper presents the procedures of analysis,assessment of results and interpretation of geophysical logs in determining the NPP of paleo-peatlands.展开更多
Developing low-carbon economy and enhancing carbon productivity are basic approaches to coordinating economic development and protecting global environment, which are also the major ways to address climate change unde...Developing low-carbon economy and enhancing carbon productivity are basic approaches to coordinating economic development and protecting global environment, which are also the major ways to address climate change under the framework of sustainable development. In this paper, the authors analyze the annual rate of carbon productivity growth, the differences of carbon productivity of different countries, and the factors for enhancing carbon productivity. Consequently, the authors clarify their viewpoint that the annual rate of carbon productivity growth can be used to weigh the efforts that a country takes to address climate change, and propose policies and suggestions on promoting carbon production.展开更多
Afforestation is conducive to soil carbon(C) sequestration in semi-arid regions. However, little is known about the effects of afforestation on sequestrations of total and labile soil organic carbon(SOC) fractions...Afforestation is conducive to soil carbon(C) sequestration in semi-arid regions. However, little is known about the effects of afforestation on sequestrations of total and labile soil organic carbon(SOC) fractions in semi-arid sandy lands. In the present study, we examined the effects of Caragana microphylla Lam. plantations with different ages(12-and 25-year-old) on sequestrations of total SOC as well as labile SOC fractions such as light fraction organic carbon(LFOC) and microbial biomass carbon(MBC). The analyzed samples were taken from soil depths of 0–5 and 5–15 cm under two shrub-related scenarios: under shrubs and between shrubs with moving sand dunes as control sites in the Horqin Sandy Land of northern China. The results showed that the concentrations and storages of total SOC at soil depths of 0–5 and 5–15 cm were higher in 12-and 25-year-old C. microphylla plantations than in moving sand dunes(i.e., control sites), with the highest value observed under shrubs in 25-year-old C. microphylla plantations. Furthermore, the concentrations and storages of LFOC and MBC showed similar patterns with those of total SOC at the same soil depth. The 12-year-old C. microphylla plantations had higher percentages of LFOC concentration to SOC concentration and MBC concentration to SOC concentration than the 25-year-old C. microphylla plantations and moving sand dunes at both soil depths. A significant positive correlation existed among SOC, LFOC, and MBC, implying that restoring the total and labile SOC fractions is possible by afforestation with C. microphylla shrubs in the Horqin Sandy Land. At soil depth of 0–15 cm, the accumulation rate of total SOC under shrubs was higher in young C. microphylla plantations(18.53 g C/(m^2·a); 0–12 years) than in old C. microphylla plantations(16.24 g C/(m^2·a); 12–25 years), and the accumulation rates of LFOC and MBC under shrubs and between shrubs were also higher in young C. microphylla plantations than in old C. microphylla plantations. It can be concluded that the establishment of C. microphylla in the Horqin Sandy Land may be a good mitigation strategy for SOC sequestration in the surface soils.展开更多
Dissolution kinetics of sodium carbonate is investigated with the image analysis method at the approach of single particle.The dissolution experiments are carried out in an aqueous solution under a series of controlle...Dissolution kinetics of sodium carbonate is investigated with the image analysis method at the approach of single particle.The dissolution experiments are carried out in an aqueous solution under a series of controlled temperature and p H.The selected sodium carbonate particles are all spherical with the same mass and diameter.The dissolution process is quantified with the measurement of particle diameter from dissolution images.The concentration of dissolved sodium carbonate in solvent is calculated with the measured diameter of particle.Both surface reaction model and mass transport model are implemented to determine the dissolution mechanism and quantify the dissolution rate constant at each experimental condition.According to the fitting results with both two models,it is clarified that the dissolution process at the increasing temperature is controlled by the mass transport of dissolved sodium carbonate travelling from particle surface into solvent.The dissolution process at the increasing pH is controlled by the chemical reaction on particle surface.Furthermore,the dissolution rate constant for each single spherical sodium carbonate particle is quantified and the results show that the dissolution rate constant of single spherical sodium carbonate increases significantly with the rising of temperature,but decreases with the increasing of pH conversely.展开更多
Miniature roses (Rosa sp.) and Kalanchoe blossfeldiana were grown at photon flux densities (PFD) ranging from 60 to 670 μmol·m-2·s-1 (associated with a temperature gradient from 20.0°C to 24.0°C [...Miniature roses (Rosa sp.) and Kalanchoe blossfeldiana were grown at photon flux densities (PFD) ranging from 60 to 670 μmol·m-2·s-1 (associated with a temperature gradient from 20.0°C to 24.0°C [TEMP1]) and from 50 to 370μmol·m-2-s-1 (associated with a temperature gradient from 22.5°C to 26.5°C [TEMP2]). The experiment was conducted in a greenhouse compartment at latitude 59° north in mid-winter. The daily photosynthetic active radiations (PAR) ranged from 4.3 to 48.2 and 3.6 to 26.6 mol·m-2·day-1 in the TEMP1 and TEMP2 treatments, respectively. Time until flowering in miniature roses decreased from about 50 to 35 days in the TEMP1 treatment and from 50 to 25 days in the TEMP2 treatment, when the PFD increased from 50 to 370μmol·m-2·s-1. In Kalanchoe time until flowering was decreased to the same extent (about 15 days) in both temperature treatments when PFD increased from 50 to 370 μmol·m-2·s-1. The number of flowers and the plant dry weight in miniature roses increased up to 300 – 400 μmol·m-2·s-1 PFD (21.6 - 28.8 mol·m-2 day-1 PAR), while flower stem fresh weight and plant dry weight in Kalanchoe increased up to 200 – 300 μmol·m-2·s-1 at TEMP1. Measurements of the diurnal carbon dioxide exchange rates (CER) in daylight in small plant stands of roses in summertime showed that CER was saturated at about 300 μmol·m-2·s-1 PFD at 370 μmol·mol-1 CO2 and at 400 – 500 μmol·m-2·s-1 PFD at 800 μmol·mol-1 CO2. For Kalanchoe similar results were obtained. Increasing the CO2 concentration from 370 to 800 μmol·mol-1 increased the CER in roses (48%) as well in Kalanchoe (69%). It was concluded that 15 to 20 mol·m-2·day-1 combined with about 24°C air temperature and high CO2 concentration will give a very good growth with lot of flowers within a short production time in miniature roses. For Kalanchoe 10 to 15 mol·m-2·day-1 combined with about 20°C and high CO2 produced a similar result.展开更多
Sodium carbonate and carboxymethyl cellulose powders are compressed into two-component tablets with three mass ratios,97%:3%,95%:5% and 93%:7%.The dissolution tests for two-component tablets and reference pure sodium ...Sodium carbonate and carboxymethyl cellulose powders are compressed into two-component tablets with three mass ratios,97%:3%,95%:5% and 93%:7%.The dissolution tests for two-component tablets and reference pure sodium carbonate tablets are carried out at various temperatures.The dissolution process of each tablet is measured by electrical conductivity tracking method and the concentration of dissolved sodium carbonate is quanti fied with calibrated conductivity-concentration converting equation of sodium carbonate.The quanti fied dissolution data is fitted with both surface reaction model and diffusion layer model and the results clearly show that surface reaction model is suggested as the appropriate dissolution model for all measured tablets.Therefore,it is determined that carboxymethyl cellulose is a stable element to remain the dissolution mechanism of tablet unchanged.The dissolution rate constant quanti fied with surface reaction model presents that carboxymethyl cellulose-sodium carbonate two-component tablets obtain signi ficant higher dissolution rate constant than pure sodium carbonate tablet and higher proportion of carboxymethyl cellulose leads to apparent higher dissolution rate constant.The results prove for the usage of carboxymethyl cellulose in most practical applications at a relative low-level,the effect of carboxymethyl cellulose is effective and positive for two-component tablet to enhance the dissolution process and improve dissolution rate constant and this effect is speculated coming from its dynamic physical transforming process in water including dilation and conglutination.展开更多
Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity. However, decreasing organic matter after land reclamation, and the effect...Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity. However, decreasing organic matter after land reclamation, and the effects of long-term inputs of organic carbon have made it less fertile black soil in Northeast China. Straw return could be an effective method for improving soil organic carbon(SOC) sequestration in black soils. The objective of this study was to evaluate whether straw return effectively increases SOC sequestration. Long-term field experiments were conducted at three sites in Northeast China with varying latitudes and SOC densities. Study plots were subjected to three treatments: no fertilization(CK); inorganic fertilization(NPK); and NPK plus straw return(NPKS). The results showed that the SOC stocks resulting from NPKS treatment were 4.0 and 5.7% higher than those from NPK treatment at two sites, but straw return did not significantly affect the SOC stocks at the third site. Furthermore, at higher SOC densities, the NPKS treatment resulted in significantly higher soil carbon sequestration rates(CSR) than the NPK treatment. The equilibrium value of the CSR for the NPKS treatment equated to cultivation times of 17, 11, and 8 years at the different sites. Straw return did not significantly increase the SOC stocks in regions with low SOC densities, but did enhance the C pool in regions with high SOC densities. These results show that there is strong regional variation in the effects of straw return on the SOC stocks in black soil in Northeast China. Additional cultivations and fertilization practices should be used when straw return is considered as an approach for the long-term improvement of the soil organic carbon pool.展开更多
Changes in forest biomass and soil organic carbon reserves have strong links to atmospheric carbon dioxide concentration.Human activities such as livestock grazing,forest fires,selective logging and firewood extractio...Changes in forest biomass and soil organic carbon reserves have strong links to atmospheric carbon dioxide concentration.Human activities such as livestock grazing,forest fires,selective logging and firewood extraction are the common disturbances that affect the carbon dynamics of the forest ecosystems.Here,we hypothesized that such anthropogenic activities significantly reduce the carbon stocks and accumulation rates in the tropical highland forests of the Sierra Madre de Chiapas in Southern Mexico.We sampled the Pinus oocarpa Scheide dominated forests within the elevation range of 900 to 1100 m above sea level in 2010,2014 and 2017.We measured the stand structural properties and used the reported allometric equations to calculate the tree carbon stocks.Stock change approach was used to calculate carbon accumulation rates.The results showed a gradual increase in carbon storage over the 7-year period from 2010 to 2017,but the rate of increase varied significantly between the study sites.The aboveground carbon stock was 107.25±11.77 Mg ha-1 for the site with lower anthropogenic intensity,compared to 74.29±16.85 Mg ha-1 for the site with higher intensity.The current annual increment for the forest with lower anthropogenic intensity was 7.81±0.65 Mg ha-1 a-1,compared to 3.87±1.03 Mg ha-1 a-1 in the site with high anthropogenic intensity.Although at varying rates,these forests are functioning as important carbon sinks.The results on carbon accumulation rates have important implications in greenhouse gas mitigations and forest change modelling in the context of changing global climate.展开更多
Global warming that triggered the climate change is largely due to increased CO2 concentrations. Utilization of Chlorella sp. to reduce CO2 gas is a promising potential. Chlorella can efficiently reduce CO2 and easily...Global warming that triggered the climate change is largely due to increased CO2 concentrations. Utilization of Chlorella sp. to reduce CO2 gas is a promising potential. Chlorella can efficiently reduce CO2 and easily be adapted into the photobioreactor system engineering. In this research, the type of microalgae which is used is Chlorella vulgaris in Benneck medium. The system of used reactor is mid-scale bubble column photobioreactor flowed by air which contains 5% CO2. Chlorella vulgaris biomass production will be increased by adjusting the cell density in the photobioreactor. These arrangements will be implemented through a continuous treatment of cell entrapment. The arrangement of cell density in continuous reactor has been proven to increase production of Chlorella vulgaris biomass about 1.25 times more than cultivation without arrangement of cell density by using the same number of inoculums. The results also have shown that the average rate of CO2 fixation and Carbon Transfer Rate (CTR) are obtained at cell entrapment condition about 17 times larger. Continuous cellular entrapment method is very potential to be developed as a method for the production of biomass. Lipids and carotene that have been produced from Ch. vulgaris respectively are 18.24% and 9.42 ppm.展开更多
基金the National Natural Science Foundation of China(Nos.U20A2089 and 41971152)the Research Foundation of the Department of Natural Resources of Hunan Province(No.20230138ST)to SLthe open research fund of Technology Innovation Center for Ecological Conservation and Restoration in Dongting Lake Basin,Ministry of Natural Resources(No.2023005)to YZ。
文摘Understanding the spatial variation,temporal changes,and their underlying driving forces of carbon sequestration in various forests is of great importance for understanding the carbon cycle and carbon management options.How carbon density and sequestration in various Cunninghamia lanceolata forests,extensively cultivated for timber production in subtropical China,vary with biodiversity,forest structure,environment,and cultural factors remain poorly explored,presenting a critical knowledge gap for realizing carbon sequestration supply potential through management.Based on a large-scale database of 449 permanent forest inventory plots,we quantified the spatial-temporal heterogeneity of aboveground carbon densities and carbon accumulation rates in Cunninghamia lanceolate forests in Hunan Province,China,and attributed the contributions of stand structure,environmental,and management factors to the heterogeneity using quantile age-sequence analysis,partial least squares path modeling(PLS-PM),and hot-spot analysis.The results showed lower values of carbon density and sequestration on average,in comparison with other forests in the same climate zone(i.e.,subtropics),with pronounced spatial and temporal variability.Specifically,quantile regression analysis using carbon accumulation rates along an age sequence showed large differences in carbon sequestration rates among underperformed and outperformed forests(0.50 and 1.80 Mg·ha^(-1)·yr^(-1)).PLS-PM demonstrated that maximum DBH and stand density were the main crucial drivers of aboveground carbon density from young to mature forests.Furthermore,species diversity and geotopographic factors were the significant factors causing the large discrepancy in aboveground carbon density change between low-and high-carbon-bearing forests.Hotspot analysis revealed the importance of culture attributes in shaping the geospatial patterns of carbon sequestration.Our work highlighted that retaining largesized DBH trees and increasing shade-tolerant tree species were important to enhance carbon sequestration in C.lanceolate forests.
基金financially supported by the National Natural Science Foundation of China (Nos. 51174020 and 51374018)the National High-Tech Research and Development Program of China (No. 2013AA031601)
文摘The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s^-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s^-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al(Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s^-1 and 0.43°C·s^-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.
基金supported in part by the National Basic Research Program of China (2009CB421303)supported by National Natural Science Foundation of China (30970546)
文摘Can soil nitrate: ammonium ratios influence plant carbon: nitrogen ratios of the early succession plant? Can plant carbon: nitrogen ratios limit the plant growth in early succession? To address these two questions, we performed a two-factor (soil nitrate: ammonium ratio and plant density) randomized block design and a uniform-precision rotatable central composite design pot experiments to examine the relationships between soil nitrate: ammonium ratios, the carbon: nitrogen ratios and growth rate of Artemisia sphaerocephala seedlings. Under adequate nutrient status, both soil nitrate: ammonium ratios and plant density influenced the carbon: nitrogen ratios and growth rate of A. sphaerocephala seedlings. Under the lower soil nitrate: ammonium ratios, with the increase of soil nitrate: ammonium ratios, the growth rates of plant height and shoot biomass of A. sphaerocephala seedlings decreased significantly; with the increase of plant carbon: nitrogen ratios, the growth rates of shoot biomass of A. sphaerocephala seedlings decreased significantly. Soil nitrate: ammonium ratios affected the carbon: nitrogen ratios of A. sphaerocephala seedlings by plant nitrogen but not by plant carbon. Thus, soil nitrate: ammonium ratios influenced the carbon: nitrogen ratios of A. sphaerocephala seedlings, and hence influenced its growth rates. Our results suggest that under adequate nutrient environment, soil nitrate: ammonium ratios can be a limiting factor for the growth of the early succession plant.
基金The National Natural Science Foundation of China under contract Nos 41976068 and 41576061。
文摘Mangroves can not only provide multiple ecosystem service functions,but are also efficient carbon producers,capturers,and sinks.The estimation of the organic carbon accumulation rate(OCAR)in mangrove sediments is fundamental for elucidating the role of mangroves in the global carbon budget.In particular,understanding the past changes in the OCAR in mangrove sediments is vital for predicting the future role of mangroves in the rapidly changing environment.In this study,three dated sediment cores from interior and fringe of mangroves in the Yingluo Bay,China,were used to reconstruct the spatiotemporal variations of the calculated OCAR since 1900 in this area.The increasing OCAR in the mangrove interior was attributed to mangrove flourishment induced by climate change characterized by the rising temperature.However,in the mangrove fringe,the strengthening hydrodynamic conditions under the sea level rise were responsible for the decreasing OCAR,particularly after the1940 s.Furthermore,the duration of inundation by seawater was the primary factors controlling the spatial variability of the OCAR from the mangrove fringe to interior,while the strengthened hydrodynamic conditions after the 1940 s broke this original pattern.
基金Project supported by the National Natural Science Foundation of China(Grant No.61671457)
文摘In this paper, a new carbon fiber based cathode — a low-outgassing-rate carbon fiber array cathode — is investigated experimentally, and the experimental results are compared with those of a polymer velvet cathode. The carbon fiber array cathode is constructed by inserting bunches of carbon fibers into the cylindrical surface of the cathode. In experiment, the diode base pressure is maintained at 1×10^(-2) Pa–2×10^(-2) Pa, and the diode is driven by a compact pulsed power system which can provide a diode voltage of about 100 kV and pulse duration of about 30 ns at a repetition rate of tens of Hz.Real-time pressure data are measured by a magnetron gauge. Under the similar conditions, the experimental results show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode and that this carbon fiber array cathode has better shot-to-shot stability than the velvet cathode. Hence, this carbon fiber array cathode is demonstrated to be a promising cathode for the radial diode, which can be used in magnetically insulated transmission line oscillator(MILO) and relativistic magnetron(RM).
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05060400)
文摘Three-North Shelterbelt Forest (TSF) program, is one of six key forestry programs and has a 73-year construction period, from 1978 to 2050. Quantitative analysis of the carbon sequestration of shrubs in this region is important for understanding the overall function of carbon sequestration of the forest and other terrestrial ecosystems in China. This study investigated the distribution area of shrubland in the TSF region based on remote sensing images in 1978 and 2008, and calculated the carbon density of shrubland in combination with the field investigation and previous data from published papers. The carbon sequestration quantity and rate from 1978 to 2008 was analyzed for four sub-regions and different types of shrubs in the TSF region. The results revealed that: 1) The area of shrubland in the study area and its four sub-regions increased during the past thirty years. The area of shrubland for the whole region in 2008 was 1.2 × 10^7 ha, 72.8% larger than that in 1978. The Inner Mongolia-Xinjiang Sub-region was the largest shrubland distribution area, while the highest coverage rate was found in the North China Sub-region. 2) In decreasing order of their carbon sequestration, the four types of shrubs considered in this study were Hippophae rhamnoides, Caragana spp., Haloxylon ammodendron and Vitex negundo vat. heterophylla. The carbon sequestration of/-/, rhamnoides, with a maximum mean carbon density of 16.5 Mg C/ha, was significantly higher than that of the other three species. 3) The total carbon sequestration of shrubland in the study region was 4.5 x 107 Mg C with a mean annual carbon sequestration of 1.5× 10^6 Mg C. The carbon density in the four sub-regions decreased in the following order: the Loess Plateau Sub-region, the North China Sub-region, the Northeast China Sub-region and the Inner Mongolia-Xinjiang Sub-region. The paucity of studies and data availability on the large-scale carbon sequestration of shrub species suggests this study provides a baseline reference for future research in this area.
基金supported by the SINOPEC project (G0800-06-ZS-319)the National Natural Science Foundation of China (Nos. 40673020 and 90714010)
文摘The redox sensitive elements, molybdenum (Mo) and uranium (U), in marine sediments from the latest Permian Dalong (大隆) Formation at the Shangsi (上寺) Section, Northeast Sichnan (四川), South China, were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine their response to a range of redox conditions, and to estimate the organic carbon burial rate. On the basis of the correlation between anthigenic Mo abundance and organic carbon content in modern oceans, the organic carbon burial rates were calculated for the rocks at Dalong Formation, ranging from 0.48-125.83 mmol/(m^2.d), which shows a larger range than the mineralization rate of organic carbon at the continental margins (1.6-4.23 mmol/(m^2-d)). The Zr-normalized Mo and U abundances show large fluctuations in the entire section. The maxima of Zr-normalized Mo abundance and thus the maxima of the organic carbon burial rates were observed at the interval between the 155th and 156th beds (404-407 m above the base of Middle Permian). A decrease (the minimum) in U/Mo ratios is present in this interval. It is speculated that the oxygen-limited conditions and ultimately anoxia or euxinia may develop within this depth interval. In contrast, an enhanced enrichment of Zr-normalized U abundance is found, in association with less enrichment in Zr-normalized Mo abundance in the interval from the 151st to 154th beds (395-404 m above the base of Middle Permian), inferring the dominance of a suboxic/anoxic depositional condition (denitrifying condition), or without free H2S. The presence of small quantities of dissolved oxygen may have caused the solubilization and loss of Mo from sediments. It is proposed that the multiple cycles of abrupt oxidation and reduction due to the upwelling at this interval lead to the enhanced accumulation of authigenic U, but less enrichment of Mo. A decrease in the contents of U, Mo, and TOC is found above the 157th bed (407 m above the base of Middle Permian), in association with the enhanced U/Mo ratio, suggesting the overall oxic conditions at the end of the Dalong Formation.
基金Supported by the National Natural Science Foundation of China(51274159)Special Funds for The Major Science and Technology Innovation of Shaanxi Province(2012zkc06-2)
文摘Limestone can be used for CO_2 capture and sequestration(CCS) in flue gas effectively. However, its CCS capability will dramatically decline after several cycles due to the surface "sintering". In this work, the limestone was modified with palygorskite to reduce sintering phenomenon between the absorbent particles during the CCS process and the carbonation rate of the limestone can be enhanced effectively. Palygorskite is a natural mineral with nano-fibrous structure which can reduce the mutual contact of limestone particles during the CCS process. The results were detected by TGA, SEM, MIP, FTIR and particle size analyzer respectively. The best CO_2 capture performance of modified absorbent was 13.11% improvement with only 5 wt% palygorskite added during the CCS process after 15 cycles compared with natural absorbent. It was found that excellent microscopic structures of absorbent modified with palygorskite was created, and the surface sintering was postponed leading to CO_2 capture performance enhanced under the same conditions.
基金funded by the National Natural Science Foundation of China (Grant Nos. 41406082, ZR2014DQ010, 40872167 and 41240022)Governmental Public Research Funds of China (Grant Nos. 201111023, 1212010611402 and GZH201200503)
文摘Sediment carbon sequestration plays an essential role in mitigating atmospheric CO2 increases and the subsequently global greenhouse effect. To clarify the late Quaternary strata and carbon burial records in YeUow River delta (YRD), detailed analysis of benthic foraminifera, total carbon (TC), organic carbon (Corg), sedimentary characteristics and moisture contents of sediments, was performed on core ZK3, 30.3 m in length and obtained from YRD in 2007. Eight depositional units (designated U1-U8 in ascending order) were identified. A comprehensive analysis method of historical geography and sedimentary geology was used to de- termine the precise depositional ages of the modem Yellow River delta (MYRD), from which pre-MYRD ages were deduced. The results indicates that the maximum burial rates of TC, inorganic carbon (IC) and Corg occurred in the delta front (U5), and the mini- mum in the shallow sea (U3). Remarkable high sedimentation rates in the MYRD are responsible for burial efficiency of carbon, with an average rate of Corg burial reaching 2087±251 g(m2yr)-1, and that of IC reaching 13741±808g(m2yr)-1, which are much higher than those of other regions with high contents of Corg. Therefore, YRD has a significant burial efficiency for carbon sequestration.
基金Funded by National Natural Science Fundation of China(No.51178455)
文摘Accelerated carbonation experiments about the development of carbonation rates of ordinary Portland cement concrete under different artificial climates were carried out. Six water cement ratios and six climate condition combinations of temperature and relative humidity were used. Results indicate that changes of concrete carbonation rate with environmental temperature agree the Arrhenius law well, which suggests concrete carbonation rate has obvious dependence on temperature. The higher the temperature is, the more quickly the concrete carbonates, and at the same time it is also affected by environmental relative humidity. Thereafter, the apparent activation energy Ea of concrete carbonation reaction was obtained, ranging from 16.8 to 20.6 kJ/mol corresponding 0.35-0.74 water cement ratio, and lower water cement ratio will cause the apparent activation energy increase. Concrete carbonation rates will increase 1.1-1.69 times as temperature increase every 10 ℃ at the temperature range of 10 to 60 ℃.
基金Funded by the National Basic Research Program of China(No.2009CB623200)Nanjing Key Construction Project (No.7612005822)
文摘The single influence of capillary porosity and coupling effects of absolute basicity and capillary porosity on concrete carbonation were investigated. The experimental results showed that carbonation rate of concrete at a given absolute basicity (AB) increased moderately with the increase of the porosity ranging from 6.2% to 9.25%, and increased rapidly with porosity from 9.25% to 12.8%.The coupling effect mainly embodied in disappeared mutation point of capillary porosity, and the distributing regions of carbonation depth were clearly partitioned in the coupling influence of absolute basicity and capillary porosity. A design method on carbonation related durability of concrete based on the coupling effects was proposed.
基金supported by the National Natural Science Foundation of China(Grant Nos.41030213 and 41572090)the Fundamental Research Funds for the Central Universities(Grant No.2022YJSDC05)the Yue Qi Scholar Project of China University of Mining and Technology(Beijing).
文摘Individual coal seams formed in paleo-peatlands represent sustained periods of terrestrial carbon accumulation and a key environmental indicator attributed to this record is the rate of carbon accumulation.Determining the rate of carbon accumulation requires a measure of time contained within the coal.This study aimed to determine this rate via the identification of Milankovitch orbital cycles in the coals.The geophysical log is an ideal paleoclimate proxy and has been widely used in the study of sedimentary records using spectral analysis.Spectral analyses of geophysical log from thick coal seams can be used to identify the Milankovitch cycles and to calculate the period of the coal deposition.By considering the carbon loss during coalification,the long-term average carbon accumulation rate and net primary productivity(NPP)of paleo-peatlands in coal seams can be obtained.This review paper presents the procedures of analysis,assessment of results and interpretation of geophysical logs in determining the NPP of paleo-peatlands.
基金Major Project of Key Research Bases of Humanities and Social Sciences of Ministry of Education(05JJD630035)Major International Joint Research Program Founded by National Natural Science Foundation of China(50246003)Major Project(90410016)
文摘Developing low-carbon economy and enhancing carbon productivity are basic approaches to coordinating economic development and protecting global environment, which are also the major ways to address climate change under the framework of sustainable development. In this paper, the authors analyze the annual rate of carbon productivity growth, the differences of carbon productivity of different countries, and the factors for enhancing carbon productivity. Consequently, the authors clarify their viewpoint that the annual rate of carbon productivity growth can be used to weigh the efforts that a country takes to address climate change, and propose policies and suggestions on promoting carbon production.
基金funded by the National Natural Science Foundation of China (31640012, 41271007, 31660232)the One Hundred Person Project of the Chinese Academy of Sciences (Y551821)+1 种基金the Opening Foundation of the State Key Laboratory Breeding Base of DesertificationAeolian Sand Disaster Combating, Gansu Desert Control Research Institute (GSDC201505)
文摘Afforestation is conducive to soil carbon(C) sequestration in semi-arid regions. However, little is known about the effects of afforestation on sequestrations of total and labile soil organic carbon(SOC) fractions in semi-arid sandy lands. In the present study, we examined the effects of Caragana microphylla Lam. plantations with different ages(12-and 25-year-old) on sequestrations of total SOC as well as labile SOC fractions such as light fraction organic carbon(LFOC) and microbial biomass carbon(MBC). The analyzed samples were taken from soil depths of 0–5 and 5–15 cm under two shrub-related scenarios: under shrubs and between shrubs with moving sand dunes as control sites in the Horqin Sandy Land of northern China. The results showed that the concentrations and storages of total SOC at soil depths of 0–5 and 5–15 cm were higher in 12-and 25-year-old C. microphylla plantations than in moving sand dunes(i.e., control sites), with the highest value observed under shrubs in 25-year-old C. microphylla plantations. Furthermore, the concentrations and storages of LFOC and MBC showed similar patterns with those of total SOC at the same soil depth. The 12-year-old C. microphylla plantations had higher percentages of LFOC concentration to SOC concentration and MBC concentration to SOC concentration than the 25-year-old C. microphylla plantations and moving sand dunes at both soil depths. A significant positive correlation existed among SOC, LFOC, and MBC, implying that restoring the total and labile SOC fractions is possible by afforestation with C. microphylla shrubs in the Horqin Sandy Land. At soil depth of 0–15 cm, the accumulation rate of total SOC under shrubs was higher in young C. microphylla plantations(18.53 g C/(m^2·a); 0–12 years) than in old C. microphylla plantations(16.24 g C/(m^2·a); 12–25 years), and the accumulation rates of LFOC and MBC under shrubs and between shrubs were also higher in young C. microphylla plantations than in old C. microphylla plantations. It can be concluded that the establishment of C. microphylla in the Horqin Sandy Land may be a good mitigation strategy for SOC sequestration in the surface soils.
基金the Institute of Particle and Science Engineering,University of Leeds and Procter&Gamble Newcastle Innovation Centre(UK)for partially funding the project
文摘Dissolution kinetics of sodium carbonate is investigated with the image analysis method at the approach of single particle.The dissolution experiments are carried out in an aqueous solution under a series of controlled temperature and p H.The selected sodium carbonate particles are all spherical with the same mass and diameter.The dissolution process is quantified with the measurement of particle diameter from dissolution images.The concentration of dissolved sodium carbonate in solvent is calculated with the measured diameter of particle.Both surface reaction model and mass transport model are implemented to determine the dissolution mechanism and quantify the dissolution rate constant at each experimental condition.According to the fitting results with both two models,it is clarified that the dissolution process at the increasing temperature is controlled by the mass transport of dissolved sodium carbonate travelling from particle surface into solvent.The dissolution process at the increasing pH is controlled by the chemical reaction on particle surface.Furthermore,the dissolution rate constant for each single spherical sodium carbonate particle is quantified and the results show that the dissolution rate constant of single spherical sodium carbonate increases significantly with the rising of temperature,but decreases with the increasing of pH conversely.
基金This work was funded by the Agricultural bank of Norway and the Norwegian Growers Association.
文摘Miniature roses (Rosa sp.) and Kalanchoe blossfeldiana were grown at photon flux densities (PFD) ranging from 60 to 670 μmol·m-2·s-1 (associated with a temperature gradient from 20.0°C to 24.0°C [TEMP1]) and from 50 to 370μmol·m-2-s-1 (associated with a temperature gradient from 22.5°C to 26.5°C [TEMP2]). The experiment was conducted in a greenhouse compartment at latitude 59° north in mid-winter. The daily photosynthetic active radiations (PAR) ranged from 4.3 to 48.2 and 3.6 to 26.6 mol·m-2·day-1 in the TEMP1 and TEMP2 treatments, respectively. Time until flowering in miniature roses decreased from about 50 to 35 days in the TEMP1 treatment and from 50 to 25 days in the TEMP2 treatment, when the PFD increased from 50 to 370μmol·m-2·s-1. In Kalanchoe time until flowering was decreased to the same extent (about 15 days) in both temperature treatments when PFD increased from 50 to 370 μmol·m-2·s-1. The number of flowers and the plant dry weight in miniature roses increased up to 300 – 400 μmol·m-2·s-1 PFD (21.6 - 28.8 mol·m-2 day-1 PAR), while flower stem fresh weight and plant dry weight in Kalanchoe increased up to 200 – 300 μmol·m-2·s-1 at TEMP1. Measurements of the diurnal carbon dioxide exchange rates (CER) in daylight in small plant stands of roses in summertime showed that CER was saturated at about 300 μmol·m-2·s-1 PFD at 370 μmol·mol-1 CO2 and at 400 – 500 μmol·m-2·s-1 PFD at 800 μmol·mol-1 CO2. For Kalanchoe similar results were obtained. Increasing the CO2 concentration from 370 to 800 μmol·mol-1 increased the CER in roses (48%) as well in Kalanchoe (69%). It was concluded that 15 to 20 mol·m-2·day-1 combined with about 24°C air temperature and high CO2 concentration will give a very good growth with lot of flowers within a short production time in miniature roses. For Kalanchoe 10 to 15 mol·m-2·day-1 combined with about 20°C and high CO2 produced a similar result.
基金the Institute of Particle and Science Engineering,University of Leeds and Procter & Gamble Newcastle Innovation Centre(UK) for partially funding the project
文摘Sodium carbonate and carboxymethyl cellulose powders are compressed into two-component tablets with three mass ratios,97%:3%,95%:5% and 93%:7%.The dissolution tests for two-component tablets and reference pure sodium carbonate tablets are carried out at various temperatures.The dissolution process of each tablet is measured by electrical conductivity tracking method and the concentration of dissolved sodium carbonate is quanti fied with calibrated conductivity-concentration converting equation of sodium carbonate.The quanti fied dissolution data is fitted with both surface reaction model and diffusion layer model and the results clearly show that surface reaction model is suggested as the appropriate dissolution model for all measured tablets.Therefore,it is determined that carboxymethyl cellulose is a stable element to remain the dissolution mechanism of tablet unchanged.The dissolution rate constant quanti fied with surface reaction model presents that carboxymethyl cellulose-sodium carbonate two-component tablets obtain signi ficant higher dissolution rate constant than pure sodium carbonate tablet and higher proportion of carboxymethyl cellulose leads to apparent higher dissolution rate constant.The results prove for the usage of carboxymethyl cellulose in most practical applications at a relative low-level,the effect of carboxymethyl cellulose is effective and positive for two-component tablet to enhance the dissolution process and improve dissolution rate constant and this effect is speculated coming from its dynamic physical transforming process in water including dilation and conglutination.
基金financially supported by the National Basic Research Program of China (973 Program, 2013CB127404)the Collaborative Innovation Action of Scientific and Technological Innovation Project of the Chinese Academy of Agricultural
文摘Black soil is one of the most precious soil resources on earth because it has abundant carbon stocks and a relatively high production capacity. However, decreasing organic matter after land reclamation, and the effects of long-term inputs of organic carbon have made it less fertile black soil in Northeast China. Straw return could be an effective method for improving soil organic carbon(SOC) sequestration in black soils. The objective of this study was to evaluate whether straw return effectively increases SOC sequestration. Long-term field experiments were conducted at three sites in Northeast China with varying latitudes and SOC densities. Study plots were subjected to three treatments: no fertilization(CK); inorganic fertilization(NPK); and NPK plus straw return(NPKS). The results showed that the SOC stocks resulting from NPKS treatment were 4.0 and 5.7% higher than those from NPK treatment at two sites, but straw return did not significantly affect the SOC stocks at the third site. Furthermore, at higher SOC densities, the NPKS treatment resulted in significantly higher soil carbon sequestration rates(CSR) than the NPK treatment. The equilibrium value of the CSR for the NPKS treatment equated to cultivation times of 17, 11, and 8 years at the different sites. Straw return did not significantly increase the SOC stocks in regions with low SOC densities, but did enhance the C pool in regions with high SOC densities. These results show that there is strong regional variation in the effects of straw return on the SOC stocks in black soil in Northeast China. Additional cultivations and fertilization practices should be used when straw return is considered as an approach for the long-term improvement of the soil organic carbon pool.
基金We thank BIOMASA A.C.and Mexico REDD+program for supporting part of the fieldwork.We are thankful to Carrie Mitchell for English revision of the manuscript.We acknowledge the constructive comments from the reviewers on the earlier version of the article.
文摘Changes in forest biomass and soil organic carbon reserves have strong links to atmospheric carbon dioxide concentration.Human activities such as livestock grazing,forest fires,selective logging and firewood extraction are the common disturbances that affect the carbon dynamics of the forest ecosystems.Here,we hypothesized that such anthropogenic activities significantly reduce the carbon stocks and accumulation rates in the tropical highland forests of the Sierra Madre de Chiapas in Southern Mexico.We sampled the Pinus oocarpa Scheide dominated forests within the elevation range of 900 to 1100 m above sea level in 2010,2014 and 2017.We measured the stand structural properties and used the reported allometric equations to calculate the tree carbon stocks.Stock change approach was used to calculate carbon accumulation rates.The results showed a gradual increase in carbon storage over the 7-year period from 2010 to 2017,but the rate of increase varied significantly between the study sites.The aboveground carbon stock was 107.25±11.77 Mg ha-1 for the site with lower anthropogenic intensity,compared to 74.29±16.85 Mg ha-1 for the site with higher intensity.The current annual increment for the forest with lower anthropogenic intensity was 7.81±0.65 Mg ha-1 a-1,compared to 3.87±1.03 Mg ha-1 a-1 in the site with high anthropogenic intensity.Although at varying rates,these forests are functioning as important carbon sinks.The results on carbon accumulation rates have important implications in greenhouse gas mitigations and forest change modelling in the context of changing global climate.
文摘Global warming that triggered the climate change is largely due to increased CO2 concentrations. Utilization of Chlorella sp. to reduce CO2 gas is a promising potential. Chlorella can efficiently reduce CO2 and easily be adapted into the photobioreactor system engineering. In this research, the type of microalgae which is used is Chlorella vulgaris in Benneck medium. The system of used reactor is mid-scale bubble column photobioreactor flowed by air which contains 5% CO2. Chlorella vulgaris biomass production will be increased by adjusting the cell density in the photobioreactor. These arrangements will be implemented through a continuous treatment of cell entrapment. The arrangement of cell density in continuous reactor has been proven to increase production of Chlorella vulgaris biomass about 1.25 times more than cultivation without arrangement of cell density by using the same number of inoculums. The results also have shown that the average rate of CO2 fixation and Carbon Transfer Rate (CTR) are obtained at cell entrapment condition about 17 times larger. Continuous cellular entrapment method is very potential to be developed as a method for the production of biomass. Lipids and carotene that have been produced from Ch. vulgaris respectively are 18.24% and 9.42 ppm.