Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applicatio...Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.展开更多
The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging des...The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging designs assembled by multiple energy harvesting,conversion and storage materials increase the energy transfer loss;the environmental energy supply is generally limited by climate and meteorological conditions,hindering the potential application of these selfpowered devices to be available at all times.Based on aerobic autoxidation of catechol,which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge,we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups.Energy harvesting,conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials.Moreover,the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications.This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.展开更多
Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistan...Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistance,aging resistance,high and low temperature resistance and chemical corrosion resistance.Moreover,silicone materials have process-able properties,simple forming process,good mechanical property,non-toxic and pollution-free.Therefore,silicone has been widely concerned by researchers at home and abroad.In this paper,the main research progress and application directions of carbon-silicone composite at home and abroad in recent years are reviewed.展开更多
To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is comp...To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is composed of SiO2 and mullite, and the inner-layer coating is mainly composed of β-SiC. The anti-oxidation behavior of the coating and the Rockwell hardness (HRB) of the coating after oxidation were investigated. The oxidation test shows that the as-prepared multi-layer coating exhibits excellent antioxidation and thermal shock resistance at high temperature. After oxidation at 1150 ℃ for 109 h and thermal shock cycling between 1150 ℃ and room temperature for 12 times, the mass gain of the coated sample is 0.085%. Meanwhile, the indentation tests also demonstrate that the as-prepared coating has good bonding ability between the layers.展开更多
Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and ou...Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and outlooks in this exciting area, with the effort of evidencing some of the possibilities offered from the growing level of knowledge, as testified from the exponentially rising number of publications, and putting bases for a more rational design of these nanomaterials. The basic members of the new carbon family are fullerene, graphene, and carbon nanotube. Derived from them are carbon quantum dots, nanohorn, nanofiber, nano ribbon, nanocapsulate, nanocage and other nanomorphologies. Second generation nanocarbons are those which have been modified by surface functionalization or doping with heteroatoms to create specific tailored properties. The third generation of nanocarbons is the nanoarchitectured supramolecular hybrids or composites of the first and second genera- tion nanocarbons, or with organic or inorganic species. The advantages of the new carbon materials, relating to the field of sustainable energy, are discussed, evidencing the unique properties that they offer for developing next generation solar devices and energy storage solutions.展开更多
Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with...Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with other materials,carbon materials are abundant,low-cost,and environmentally friendly,and have excellent electrochemical properties,which make them especially suitable for negative electrode materials of SIBs and PIBs.Compared with traditional carbon materials,modifications of the morphology and size of nanomaterials represent effective strategies to improve the quality of electrode materials.Different nanostructures make different contributions toward improving the electrochemical performance of electrode materials,so the synthesis of nanomaterials is promising for controlling the morphology and size of electrode materials.This paper reviews the progress made and challenges in the use of carbon materials as negative electrode materials for SIBs and PIBs in recent years.The differences in Na+and K+storage mechanisms among different types of carbon materials are emphasized.展开更多
Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applic...Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs.展开更多
Lithium(Li)metal is regarded as the ultimate anode for next-generation Li-ion batteries due to its highest specific capacity and lowest electrochemical potential.However,the Li metal anode has limitations,including vi...Lithium(Li)metal is regarded as the ultimate anode for next-generation Li-ion batteries due to its highest specific capacity and lowest electrochemical potential.However,the Li metal anode has limitations,including virtually infinite volume change,nonuniform Li deposition,and an unstable electrode-electrolyte interface,which lead to rapid capacity degradation and poor cycling stability,significantly hindering its practical application.To address these issues,intensive efforts have been devoted toward accommodating and guiding Li deposition as well as stabilizing the interface using various carbon materials,which have demonstrated excellent effectiveness,benefiting from their vast variety and excellent tunability of the structure-property relationship.This review is intended as a guide through the fundamental challenges of Li metal anodes to the corresponding solutions utilizing carbon materials.The specific functionalities and mechanisms of carbon materials for stabilizing Li metal anodes in these solutions are discussed in detail.Apart from the stabilization of the Li metal anode in liquid electrolytes,attention has also been paid to the review of anode-free Li metal batteries and solid-state batteries enabled by strategies based on carbon materials.Furthermore,we have reviewed the unresolved challenges and presented our outlook on the implementation of carbon materials for stabilizing Li metal anodes in practical applications.展开更多
The catalysis of four carbon materials including artificial graphite(AG), carbon black(CB), activated carbon(AC) and carbon nanotube(CN) on chalcopyrite bioleaching by mixed moderate thermophiles was comparatively inv...The catalysis of four carbon materials including artificial graphite(AG), carbon black(CB), activated carbon(AC) and carbon nanotube(CN) on chalcopyrite bioleaching by mixed moderate thermophiles was comparatively investigated. In AC and AG added bioleaching groups, low solution pH and suitable redox potential values, high total iron and ferric iron concentrations, and large number of adsorbed bacteria were obtained, resulting in high copper extractions. CB and CN inhibited the growth of bioleaching bacteria and led to the low bioleaching efficiency.X-ray diffraction analysis showed that jarosite and sulfur film were the main components of passivation layer with the addition of AG and AC,but did not hinder the dissolution of chalcopyrite. Microbial community structures of free and attached cells in AC and AG added groups changed dramatically compared with mixed moderate thermophiles. The sulfur-oxidizing bacteria of A. caldus S1 strain dominated the microbial community(93%-98%) at the end of bioleaching.The iron-oxidizing bacteria of L.ferriphilum YSK only accounted for low percentage(1%-2%).展开更多
As a prospective visible-light-responsive photochemical material,graphitic carbon nitride(g-C_(3)N_(4))has become a burgeoning research hot topics and aroused a wide interest as a metal-free semiconductor in the area ...As a prospective visible-light-responsive photochemical material,graphitic carbon nitride(g-C_(3)N_(4))has become a burgeoning research hot topics and aroused a wide interest as a metal-free semiconductor in the area of energy utilization and conversion,environmental protection due to its unique properties,such as facile synthesis,high physicochemical stability,excellent electronic band structure,and sustainability.However,the shortcomings of high recombination rate of charge carriers,relatively low electrical conductivity and visible light absorption impede its practical application.Various strategies,such as surface photosensitization,heteroatom deposition,semiconductor hybridization,etc.,have been applied to overcome the barriers.Among all the strategies,functional nanocarbon materials with various dimensions(0D~3D)attract much attention as modifiers of g-C_(3)N_(4)due to their unique electronic properties,optical properties,and easy functionalization.More importantly,the properties of these functional nanocarbon materials can be tuned by various dimensions and thus there will be a way to overcome the defects of g-C_(3)N_(4)by choosing different dimensional carbon materials.Distinguishing from some present reviews,this review starts with the fundamental physicochemical characteristics of g-C_(3)N_(4)materials,followed by analyzing the advantages of functional nanocarbon materials modifying gC_(3)N_(4).Then,we present a systematic introduction to various dimensional carbon materials.The design philosophy of carbon/g-C_(3)N_(4)composites and the advanced studies are exemplified in detail.Finally,a nichetargeting summary and outlook on the major challenges,opportunities for future research in high-powered carbon/g-C_(3)N_(4)composites was proposed.展开更多
A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidificatio...A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with the latter deposited on the interior and the exterior surfaces of the EG pores. The thickness of the activated carbon layer is calculated to be about one hundred nanometers and is further confirmed by scanning electron microscope (SEM) and transmission election microscope (TEM). A maximum static phenol adsorption of 241.2 mg·g-1 was obtained by using MNC, slightly higher than that of 220.4 mg·g-1 by using commercial activated carbon (CAC). The phenol adsorption kinetics were investigated and the data fitted well to a pseudo-second-order model. Also, an intra-particle diffusion mechanism was proposed. Furthermore, it is found that the dynamic adsorption capacity of MNC is nearly three times that of CAC. The results suggest that the MNC is a more efficient adsorbent than CAC for the removal of phenol from aqueous solution.展开更多
Waste energy harvesting can contribute to the increase of the efficiency of many industrial processes,which consume energy to produce valuable products.Among all the wasted energy,heat energy is the most abundant,exis...Waste energy harvesting can contribute to the increase of the efficiency of many industrial processes,which consume energy to produce valuable products.Among all the wasted energy,heat energy is the most abundant,existing in almost any situation.Thermoelectric devices have the capability to harvest and convert the thermal energy into electrical power via the Seebeck effect.With its simple operating principle,thermoelectric devices can be reliable even under the harshest environments,taking advantage of any type of heat source.As a result,various inorganic and organic materials are being explored as thermoelectric materials.Among the reported materials,carbon-based materials are promising in terms of commericialization,due to their nontoxic and abundant nature,and solution processability.In particular,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS),carbon nanotubes,and graphene are extensively studied as thermoelectric materials owing to their remarkable thermoelectric performance.Also,organic-inorganic hybrid halide perovskites show the potential to be used as future high-performance thermoelectric materials.Here,the progess in carbon materials as thermoelectrics is reviewed in detail,focusing on four base materials(PEDOT:PSS,carbon nanotubes,graphene,and organic-inorganic hybrid halide perovskites).This review illuminates the potential of carbon-based materials in the field of thermoelectrics and their application to next-generation energy devices.展开更多
Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources.However,storing hydrogen in a compact,inexpensive,and safe manner is the main restriction on the extensive utilization of ...Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources.However,storing hydrogen in a compact,inexpensive,and safe manner is the main restriction on the extensive utilization of hydrogen energy.Magnesium(Mg)-based hydrogen storage material is considered a reliable solid hydrogen storage material with the advantages of high hydrogen storage capacity(7.6wt%),good performance,and low cost.However,the high thermodynamic stability and slow kinetics of Mg-based hydrogen storage materials have to be overcome.In this paper,we will review the recent advances in the nanoconfinement of Mg-related hydrogen storage materials by loading Mg particles on different supporting materials,including carbons,metal-organic frameworks,and other materials.Perspectives are also provided for designing high-performance Mg-based materials using nanoconfinement.展开更多
Two-dimensional(2D)graphitic carbon nitride(g-CN)is a promising anode material for sodium-ion batteries(SIBs),but its insufficient interlayer spacing and poor electronic conductivity impede its sodium storage capacity...Two-dimensional(2D)graphitic carbon nitride(g-CN)is a promising anode material for sodium-ion batteries(SIBs),but its insufficient interlayer spacing and poor electronic conductivity impede its sodium storage capacity and cycling stability.Herein,we report the fabrication of a fullerene(C_(60))-modified graphitic carbon nitride(C_(60)@CN)material which as an anode material for SIBs shows a high-reversible capacity(430.5 mA h g^(−1) at 0.05 A g^(−1),about 3 times higher than that of pristine g-CN),excellent rate capability(226.6 mA h g^(−1) at 1 A g^(−1))and ultra-long cycle life(101.2 mA h g^(−1) after 5000 cycles at 5 A g^(−1)).Even at a high-active mass loading of 3.7 mg cm^(−2),a reversible capacity of 316.3 mA h g^(−1) can be obtained after 100 cycles.Such outstanding performance of C_(60)@CN is attributed to the C_(60) molecules distributed in the g-CN nanosheets,which enhance the electronic conductivity and prevent g-CN sheets from restacking,thus resulting in enlarged interlayer spacing and exposed edge N defects(pyridinic N and pyrrolic N)for sodium-ion storage.Furthermore,a sodium-ion full cell combining C60@CN anode and NVPF@rGO cathode provides high-coulombic efficiency(>96.5%),exceptionally high-energy density(359.8 W h kganode−1 at power density of 105.1 W kganode−1)and excellent cycling stability(89.2%capacity retention over 500 cycles at 1Aganode−1).This work brings new insights into the field of carbon-based anode materials for SIBs.展开更多
The realization of“carbon peak”and“carbon neutralization”highly depends on the efficient utilization of renewable energy sources.Exploring reliable and low-cost electrochemical energy storage systems is an ever-gr...The realization of“carbon peak”and“carbon neutralization”highly depends on the efficient utilization of renewable energy sources.Exploring reliable and low-cost electrochemical energy storage systems is an ever-growing demand for renewable energy integration.Among available candidates,aqueous zinc-ion batteries(AZIBs)receive extensive researchers'attention because of their material abundance,high capacity,high safety,and environmental friendliness.However,the irreversible issues of Zn anode in terms of notorious dendric Zn growth,Zn corrosion/hydrogen evolution,and passivation significantly impede the commercialization of high-performance AZIBs.Carbon materials have advantages of large specific surface area,low cost,high electrical conductivity,controllable structure,and good stability.Their application provides remedies for improving the comprehensive performance of Zn anodes.In this review,the fundamentals and issues of Zn anodes,and the research progress with functional carbon materials for Zn anodes in recent years are presented.Three major strategies are described in detail,including the use of carbon materials(carbon nanotubes,graphene,carbon fiber,metal-organic framework(MOF)derived host,etc.)as Zn plating/stripping substrates,as protective coating layers on Zn,and as electrolyte additives.Finally,the remaining challenges and perspectives of carbon materials in high-performance AZIBs are outlined.展开更多
The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,la...The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology.展开更多
Perovskite solar cells (PVSCs) have attracted extensive studies due to their high power conversion efficiency (PCE) with low-cost in both raw material and processes. However, there remain obstacles that hinder the...Perovskite solar cells (PVSCs) have attracted extensive studies due to their high power conversion efficiency (PCE) with low-cost in both raw material and processes. However, there remain obstacles that hinder the way to their commer- cialization. Among many drawbacks in PVSCs, we note the problems brought by the use of noble metal counter electrodes (CEs) such as gold and silver. The costly Au and Ag need high energy-consumption thermal evaporation process which can be made only with expensive evaporation equipment under vacuum. All the factors elevate the threshold of PVSCs' commercialization. Carbon material, on the other hand, is a readily available electrode candidate for the application as CE in the PVSCs. In this review, endeavors on PVSCs with low-cost carbon materials will be comprehensively discussed based on different device structures and carbon compositions. We believe that the PVSCs with carbon-based CE hold the promise of commercialization of this new technology.展开更多
With the increasing energy demand together with the deteriorating environment and decreasing fossil fuel resources,the development of highly efficient energy conversion and storage devices is one of the key challenges...With the increasing energy demand together with the deteriorating environment and decreasing fossil fuel resources,the development of highly efficient energy conversion and storage devices is one of the key challenges of both fundamental and applied research in energy technology.Melamine sponges(MS)with low density,high nitrogen content,and high porosity have been used to design and obtain three‐dimensional porous carbon electrode materials.More importantly,they are inexpensive,environment‐friendly,and easy to synthesize.There have been many reports on the modification of carbonized MS and MS‐based composites for supercapacitor and lithium battery electrode materials.In this paper,recent studies on the fabrication of electrode materials using MS as raw materials have been mainly reviewed,including carbonation,doping activation,and composite modification of MS,and expectations for the development of porous carbon materials for energy storage as a reference with excellent performance,environment‐friendliness,and long life.展开更多
Currently,the energy crisis is the crucial problem faced by the world,and photocatalytic hydrogen(H_(2))production is recognized with a chance to be a standout amongst those guaranteeing results to this issue.For a lo...Currently,the energy crisis is the crucial problem faced by the world,and photocatalytic hydrogen(H_(2))production is recognized with a chance to be a standout amongst those guaranteeing results to this issue.For a long time,photocatalytic H_(2) production has mainly relied on the noble metal cata‐lysts.However,the limitations of noble metals themselves,such as scarcity and high cost,have se‐verely restricted their large‐scale application.Therefore,it is urgent to seek a cheaper,more effi‐cient,and stable catalyst for photocatalytic H_(2) production.Fortunately,the emergence of carbon nanostructured materials(CNMs)has brought dawn.Its excellent structure and semiconductor performance can effectively participate in photocatalytic H_(2) production.CNMs have developed rap‐idly since they appeared in the field of photocatalytic water splitting.Therefore,it is necessary to summarize the latest progress of CNMs promptly for further development.This review introduced the CNMs,including carbon dots,fullerenes,carbon nanotubes,graphene,and graphdiyne,which is a powerful assistant in photocatalytic H_(2) production.CNMs can provide abundant adsorption and active sites,charge separation and transport channels,photocatalysts,co‐catalysts and photosensi‐tizers.Then,this review has introduced the strategy for enhancing CNMs in photocatalytic H_(2) pro‐duction based on recent research.Finally,the challenge faced by CNMs in photocatalytic H_(2) produc‐tion has prospected.展开更多
Metal-organic frameworks(MOFs)are of quite a significance in the field of inorganic-organic hybrid crystals.Especially,MOFs have attracted increasing attention in recent years due to their large specific surface area,...Metal-organic frameworks(MOFs)are of quite a significance in the field of inorganic-organic hybrid crystals.Especially,MOFs have attracted increasing attention in recent years due to their large specific surface area,desirable electrical conductivity,controllable porosity,tunable geometric structure,and excellent thermal/chemical stability.Some recent studies have shown that carbon materials prepared by MOFs as precursors can retain the privileged structure of MOFs,such as large specific surface area and porous structure and,in contrast,realize in situ doping with heteroatoms(eg,N,S,P,and B).Moreover,by selecting appropriate MOF precursors,the composition and morphology of the carbon products can be easily adjusted.These remarkable structural advantages enable the great potential of MOF-derived carbon as high-performance energy materials,which to date have been applied in the fields of energy storage and conversion systems.In this review,we summarize the latest advances in MOF-derived carbon materials for energy storage applications.We first introduce the compositions,structures,and synthesis methods of MOF-derived carbon materials,and then discuss their applications and potentials in energy storage systems,including rechargeable lithium/sodium-ion batteries,lithium-sulfur batteries,supercapacitors,and so forth,in detail.Finally,we put forward our own perspectives on the future development of MOF-derived carbon materials.展开更多
文摘Defect engineering by heteroatom doping gives carbon materials some new characteristics such as a different electronic structure and a high electrochemical activity,making them suitable for high-performance applications.N-doping has been widely investigated because of its similar atom radius to carbon,high electronegativity as well as many different configurations.We summarize the preparation methods and properties of N-doped carbon materials,and discuss their possible use in sodium ion storage.The relationships between N content/configuration and crystallinity,electronic conductivity,wettability,chemical reactivity as well as sodium ion storage performance are discussed.
基金financially supported by the National Natural Science Foundation of China(51503178,52202048,52027801)National Key R&D Program of China(2017YFA0206301)+1 种基金China-Germany Collaboration Project(M-0199)Natural Science Foundation of Hebei Province(B2021203012,E2022203082)。
文摘The self-charging concept has drawn considerable attention due to its excellent ability to achieve environmental energy harvesting,conversion and storage without an external power supply.However,most self-charging designs assembled by multiple energy harvesting,conversion and storage materials increase the energy transfer loss;the environmental energy supply is generally limited by climate and meteorological conditions,hindering the potential application of these selfpowered devices to be available at all times.Based on aerobic autoxidation of catechol,which is similar to the electrochemical oxidation of the catechol groups on the carbon materials under an electrical charge,we proposed an air-breathing chemical self-charge concept based on the aerobic autoxidation of catechol groups on oxygen-enriched carbon materials to ortho-quinone groups.Energy harvesting,conversion and storage functions could be integrated on a single carbon material to avoid the energy transfer loss among the different materials.Moreover,the assembled Cu/oxygen-enriched carbon battery confirmed the feasibility of the air-oxidation self-charging/electrical discharging mechanism for potential applications.This air-breathing chemical self-charge concept could facilitate the exploration of high-efficiency sustainable air self-charging devices.
文摘Silicone is a kind of polymer material with high cross-linked structure,which is com-posed by Si-O-Si main chain.Due to the special molecular chain structure,silicone mate-rials are characterized by oxidation resistance,aging resistance,high and low temperature resistance and chemical corrosion resistance.Moreover,silicone materials have process-able properties,simple forming process,good mechanical property,non-toxic and pollution-free.Therefore,silicone has been widely concerned by researchers at home and abroad.In this paper,the main research progress and application directions of carbon-silicone composite at home and abroad in recent years are reviewed.
基金Project (2012M511752) supported by China Postdoctoral Science FoundationProject (2011CB605801) supported by the National Basical Research Program of China+3 种基金Project (2012QNZT004) supported by the Fundamental Research Funds of the Central Universities, ChinaProject supported by the Freedom Explore Program of Central South University, ChinaProject (CSUZC2012026) supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University, ChinaProject supported by the Postdoctoral Science Foundation of Central South University, China
文摘To protect carbon materials from oxidation, mullite/SiC coatings were prepared on graphite by chemical vapor reaction (CVR) and slurry sintering. The XRD analyses show that the phase of the outer-layer coating is composed of SiO2 and mullite, and the inner-layer coating is mainly composed of β-SiC. The anti-oxidation behavior of the coating and the Rockwell hardness (HRB) of the coating after oxidation were investigated. The oxidation test shows that the as-prepared multi-layer coating exhibits excellent antioxidation and thermal shock resistance at high temperature. After oxidation at 1150 ℃ for 109 h and thermal shock cycling between 1150 ℃ and room temperature for 12 times, the mass gain of the coated sample is 0.085%. Meanwhile, the indentation tests also demonstrate that the as-prepared coating has good bonding ability between the layers.
基金the financial support by MOST (2011CBA00504)NSFC (21133010, 50921004, 212111074) of China
文摘Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and outlooks in this exciting area, with the effort of evidencing some of the possibilities offered from the growing level of knowledge, as testified from the exponentially rising number of publications, and putting bases for a more rational design of these nanomaterials. The basic members of the new carbon family are fullerene, graphene, and carbon nanotube. Derived from them are carbon quantum dots, nanohorn, nanofiber, nano ribbon, nanocapsulate, nanocage and other nanomorphologies. Second generation nanocarbons are those which have been modified by surface functionalization or doping with heteroatoms to create specific tailored properties. The third generation of nanocarbons is the nanoarchitectured supramolecular hybrids or composites of the first and second genera- tion nanocarbons, or with organic or inorganic species. The advantages of the new carbon materials, relating to the field of sustainable energy, are discussed, evidencing the unique properties that they offer for developing next generation solar devices and energy storage solutions.
文摘Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with other materials,carbon materials are abundant,low-cost,and environmentally friendly,and have excellent electrochemical properties,which make them especially suitable for negative electrode materials of SIBs and PIBs.Compared with traditional carbon materials,modifications of the morphology and size of nanomaterials represent effective strategies to improve the quality of electrode materials.Different nanostructures make different contributions toward improving the electrochemical performance of electrode materials,so the synthesis of nanomaterials is promising for controlling the morphology and size of electrode materials.This paper reviews the progress made and challenges in the use of carbon materials as negative electrode materials for SIBs and PIBs in recent years.The differences in Na+and K+storage mechanisms among different types of carbon materials are emphasized.
基金the financial support from the National Natural Science Foundation of China (22108044)the 111 Project (B20088)+3 种基金the Fundamental Research Funds for the Central Universities (2572022DJ02)the Research and Development Program in Key Fields of Guangdong Province (2020B1111380002)the Basic Research and Applicable Basic Research in Guangzhou City (202201010290)the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery (2021GDKLPRB07)。
文摘Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs.
基金support from the Federal Ministry of Education and Research(BMBF)under project“KaSiLi”(03XP0254D)in the competence cluster“ExcellBattMat.”。
文摘Lithium(Li)metal is regarded as the ultimate anode for next-generation Li-ion batteries due to its highest specific capacity and lowest electrochemical potential.However,the Li metal anode has limitations,including virtually infinite volume change,nonuniform Li deposition,and an unstable electrode-electrolyte interface,which lead to rapid capacity degradation and poor cycling stability,significantly hindering its practical application.To address these issues,intensive efforts have been devoted toward accommodating and guiding Li deposition as well as stabilizing the interface using various carbon materials,which have demonstrated excellent effectiveness,benefiting from their vast variety and excellent tunability of the structure-property relationship.This review is intended as a guide through the fundamental challenges of Li metal anodes to the corresponding solutions utilizing carbon materials.The specific functionalities and mechanisms of carbon materials for stabilizing Li metal anodes in these solutions are discussed in detail.Apart from the stabilization of the Li metal anode in liquid electrolytes,attention has also been paid to the review of anode-free Li metal batteries and solid-state batteries enabled by strategies based on carbon materials.Furthermore,we have reviewed the unresolved challenges and presented our outlook on the implementation of carbon materials for stabilizing Li metal anodes in practical applications.
基金Project(31570113)supported by the National Natural Science Foundation of ChinaProject(2016YFB0101310)supported by the National Key Research and Development Program of China
文摘The catalysis of four carbon materials including artificial graphite(AG), carbon black(CB), activated carbon(AC) and carbon nanotube(CN) on chalcopyrite bioleaching by mixed moderate thermophiles was comparatively investigated. In AC and AG added bioleaching groups, low solution pH and suitable redox potential values, high total iron and ferric iron concentrations, and large number of adsorbed bacteria were obtained, resulting in high copper extractions. CB and CN inhibited the growth of bioleaching bacteria and led to the low bioleaching efficiency.X-ray diffraction analysis showed that jarosite and sulfur film were the main components of passivation layer with the addition of AG and AC,but did not hinder the dissolution of chalcopyrite. Microbial community structures of free and attached cells in AC and AG added groups changed dramatically compared with mixed moderate thermophiles. The sulfur-oxidizing bacteria of A. caldus S1 strain dominated the microbial community(93%-98%) at the end of bioleaching.The iron-oxidizing bacteria of L.ferriphilum YSK only accounted for low percentage(1%-2%).
基金supported by the Startup Foundation of China(3160011181808)。
文摘As a prospective visible-light-responsive photochemical material,graphitic carbon nitride(g-C_(3)N_(4))has become a burgeoning research hot topics and aroused a wide interest as a metal-free semiconductor in the area of energy utilization and conversion,environmental protection due to its unique properties,such as facile synthesis,high physicochemical stability,excellent electronic band structure,and sustainability.However,the shortcomings of high recombination rate of charge carriers,relatively low electrical conductivity and visible light absorption impede its practical application.Various strategies,such as surface photosensitization,heteroatom deposition,semiconductor hybridization,etc.,have been applied to overcome the barriers.Among all the strategies,functional nanocarbon materials with various dimensions(0D~3D)attract much attention as modifiers of g-C_(3)N_(4)due to their unique electronic properties,optical properties,and easy functionalization.More importantly,the properties of these functional nanocarbon materials can be tuned by various dimensions and thus there will be a way to overcome the defects of g-C_(3)N_(4)by choosing different dimensional carbon materials.Distinguishing from some present reviews,this review starts with the fundamental physicochemical characteristics of g-C_(3)N_(4)materials,followed by analyzing the advantages of functional nanocarbon materials modifying gC_(3)N_(4).Then,we present a systematic introduction to various dimensional carbon materials.The design philosophy of carbon/g-C_(3)N_(4)composites and the advanced studies are exemplified in detail.Finally,a nichetargeting summary and outlook on the major challenges,opportunities for future research in high-powered carbon/g-C_(3)N_(4)composites was proposed.
基金financially supported by the Fundamental Research Funds for the National Natural Science Foundation of China(Nos.21071107,21277094,and21103119)Production and Research Collaborative Innovation Project of Jiangsu Province(No.BY2012123)+9 种基金Natural Science Foundation of Jiangsu Province(No.BK2012167)Scienceand Technology Pillar Program(Industry)of Jiangsu Province(No.BE2012101)Collegiate Natural Science Fund of Jiangsu Province(Nos.12KJA430005,09KJB30003,and11KJB430012)Key Laboratory for Environment Functional Materials of Suzhou(No.SZS201008)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),Applied Basic Research Project of Suzhou(No.SYG201242)Industrial Surport Project of Suzhou(No.SG201138)Jiangsu Key Laboratory of Material Tribology(No.Kjsmcx2011001)Jiangsu Key Laboratory for Photon Manufacturing(No.GZ201111)Jiangsu Provincial Key Laboratory for Interventional Medical Devices(No.Jr1210)Creative Project of Postgraduate of Jiangsu Province(No.CXZZ11_0954)
文摘A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with the latter deposited on the interior and the exterior surfaces of the EG pores. The thickness of the activated carbon layer is calculated to be about one hundred nanometers and is further confirmed by scanning electron microscope (SEM) and transmission election microscope (TEM). A maximum static phenol adsorption of 241.2 mg·g-1 was obtained by using MNC, slightly higher than that of 220.4 mg·g-1 by using commercial activated carbon (CAC). The phenol adsorption kinetics were investigated and the data fitted well to a pseudo-second-order model. Also, an intra-particle diffusion mechanism was proposed. Furthermore, it is found that the dynamic adsorption capacity of MNC is nearly three times that of CAC. The results suggest that the MNC is a more efficient adsorbent than CAC for the removal of phenol from aqueous solution.
基金National Research Foundation of Korea,Grant/Award Numbers:2017M3A7B4041696,2021R1A5A6002853。
文摘Waste energy harvesting can contribute to the increase of the efficiency of many industrial processes,which consume energy to produce valuable products.Among all the wasted energy,heat energy is the most abundant,existing in almost any situation.Thermoelectric devices have the capability to harvest and convert the thermal energy into electrical power via the Seebeck effect.With its simple operating principle,thermoelectric devices can be reliable even under the harshest environments,taking advantage of any type of heat source.As a result,various inorganic and organic materials are being explored as thermoelectric materials.Among the reported materials,carbon-based materials are promising in terms of commericialization,due to their nontoxic and abundant nature,and solution processability.In particular,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS),carbon nanotubes,and graphene are extensively studied as thermoelectric materials owing to their remarkable thermoelectric performance.Also,organic-inorganic hybrid halide perovskites show the potential to be used as future high-performance thermoelectric materials.Here,the progess in carbon materials as thermoelectrics is reviewed in detail,focusing on four base materials(PEDOT:PSS,carbon nanotubes,graphene,and organic-inorganic hybrid halide perovskites).This review illuminates the potential of carbon-based materials in the field of thermoelectrics and their application to next-generation energy devices.
基金financially supported by the research programs of the National Natural Science Foundation of China (No. 52101274)the Natural Science Foundation of Shandong Province, China (No. ZR2020QE011)the Youth Top Talent Foundation of Yantai University, China (No. 2219008)
文摘Hydrogen is an ideal clean energy because of its high calorific value and abundance of sources.However,storing hydrogen in a compact,inexpensive,and safe manner is the main restriction on the extensive utilization of hydrogen energy.Magnesium(Mg)-based hydrogen storage material is considered a reliable solid hydrogen storage material with the advantages of high hydrogen storage capacity(7.6wt%),good performance,and low cost.However,the high thermodynamic stability and slow kinetics of Mg-based hydrogen storage materials have to be overcome.In this paper,we will review the recent advances in the nanoconfinement of Mg-related hydrogen storage materials by loading Mg particles on different supporting materials,including carbons,metal-organic frameworks,and other materials.Perspectives are also provided for designing high-performance Mg-based materials using nanoconfinement.
基金supported by the National Science Foundation of China(No.21925104 and 51672093).
文摘Two-dimensional(2D)graphitic carbon nitride(g-CN)is a promising anode material for sodium-ion batteries(SIBs),but its insufficient interlayer spacing and poor electronic conductivity impede its sodium storage capacity and cycling stability.Herein,we report the fabrication of a fullerene(C_(60))-modified graphitic carbon nitride(C_(60)@CN)material which as an anode material for SIBs shows a high-reversible capacity(430.5 mA h g^(−1) at 0.05 A g^(−1),about 3 times higher than that of pristine g-CN),excellent rate capability(226.6 mA h g^(−1) at 1 A g^(−1))and ultra-long cycle life(101.2 mA h g^(−1) after 5000 cycles at 5 A g^(−1)).Even at a high-active mass loading of 3.7 mg cm^(−2),a reversible capacity of 316.3 mA h g^(−1) can be obtained after 100 cycles.Such outstanding performance of C_(60)@CN is attributed to the C_(60) molecules distributed in the g-CN nanosheets,which enhance the electronic conductivity and prevent g-CN sheets from restacking,thus resulting in enlarged interlayer spacing and exposed edge N defects(pyridinic N and pyrrolic N)for sodium-ion storage.Furthermore,a sodium-ion full cell combining C60@CN anode and NVPF@rGO cathode provides high-coulombic efficiency(>96.5%),exceptionally high-energy density(359.8 W h kganode−1 at power density of 105.1 W kganode−1)and excellent cycling stability(89.2%capacity retention over 500 cycles at 1Aganode−1).This work brings new insights into the field of carbon-based anode materials for SIBs.
基金financially supported by the National Natural Science Foundation of China(51872090,51772097,and 22075067)the Hebei Natural Science Fund for Distinguished Young Scholar(E2019209433)+3 种基金the Youth Talent Program of Hebei Provincial Education Department(BJ2018020)the Natural Science Foundation of Hebei Province(E2020209151 and B2020201001)the Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)the Science and Technology Project of Hebei Education Department(SLRC2019028)。
文摘The realization of“carbon peak”and“carbon neutralization”highly depends on the efficient utilization of renewable energy sources.Exploring reliable and low-cost electrochemical energy storage systems is an ever-growing demand for renewable energy integration.Among available candidates,aqueous zinc-ion batteries(AZIBs)receive extensive researchers'attention because of their material abundance,high capacity,high safety,and environmental friendliness.However,the irreversible issues of Zn anode in terms of notorious dendric Zn growth,Zn corrosion/hydrogen evolution,and passivation significantly impede the commercialization of high-performance AZIBs.Carbon materials have advantages of large specific surface area,low cost,high electrical conductivity,controllable structure,and good stability.Their application provides remedies for improving the comprehensive performance of Zn anodes.In this review,the fundamentals and issues of Zn anodes,and the research progress with functional carbon materials for Zn anodes in recent years are presented.Three major strategies are described in detail,including the use of carbon materials(carbon nanotubes,graphene,carbon fiber,metal-organic framework(MOF)derived host,etc.)as Zn plating/stripping substrates,as protective coating layers on Zn,and as electrolyte additives.Finally,the remaining challenges and perspectives of carbon materials in high-performance AZIBs are outlined.
基金Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2019MB019National Natural Science Foundation of China,Grant/Award Numbers:22075122,52071295Research Foundation for Talented Scholars of Linyi University,Grant/Award Number:Z6122010。
文摘The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology.
基金Project supported by"Hundred Talents Program"of the Haixi Institute,Chinese Academy of Sciences(Grant No.1017001)"Thousand Talents Program"of China
文摘Perovskite solar cells (PVSCs) have attracted extensive studies due to their high power conversion efficiency (PCE) with low-cost in both raw material and processes. However, there remain obstacles that hinder the way to their commer- cialization. Among many drawbacks in PVSCs, we note the problems brought by the use of noble metal counter electrodes (CEs) such as gold and silver. The costly Au and Ag need high energy-consumption thermal evaporation process which can be made only with expensive evaporation equipment under vacuum. All the factors elevate the threshold of PVSCs' commercialization. Carbon material, on the other hand, is a readily available electrode candidate for the application as CE in the PVSCs. In this review, endeavors on PVSCs with low-cost carbon materials will be comprehensively discussed based on different device structures and carbon compositions. We believe that the PVSCs with carbon-based CE hold the promise of commercialization of this new technology.
基金The authors appreciate the support from the Natural Science Foundation of Shandong Province(ZR2019MB019,ZR2018MEM020)We also acknowledge financial support from the Key Research and Development Program of Shandong Province(2019GSF111047).
文摘With the increasing energy demand together with the deteriorating environment and decreasing fossil fuel resources,the development of highly efficient energy conversion and storage devices is one of the key challenges of both fundamental and applied research in energy technology.Melamine sponges(MS)with low density,high nitrogen content,and high porosity have been used to design and obtain three‐dimensional porous carbon electrode materials.More importantly,they are inexpensive,environment‐friendly,and easy to synthesize.There have been many reports on the modification of carbonized MS and MS‐based composites for supercapacitor and lithium battery electrode materials.In this paper,recent studies on the fabrication of electrode materials using MS as raw materials have been mainly reviewed,including carbonation,doping activation,and composite modification of MS,and expectations for the development of porous carbon materials for energy storage as a reference with excellent performance,environment‐friendliness,and long life.
文摘Currently,the energy crisis is the crucial problem faced by the world,and photocatalytic hydrogen(H_(2))production is recognized with a chance to be a standout amongst those guaranteeing results to this issue.For a long time,photocatalytic H_(2) production has mainly relied on the noble metal cata‐lysts.However,the limitations of noble metals themselves,such as scarcity and high cost,have se‐verely restricted their large‐scale application.Therefore,it is urgent to seek a cheaper,more effi‐cient,and stable catalyst for photocatalytic H_(2) production.Fortunately,the emergence of carbon nanostructured materials(CNMs)has brought dawn.Its excellent structure and semiconductor performance can effectively participate in photocatalytic H_(2) production.CNMs have developed rap‐idly since they appeared in the field of photocatalytic water splitting.Therefore,it is necessary to summarize the latest progress of CNMs promptly for further development.This review introduced the CNMs,including carbon dots,fullerenes,carbon nanotubes,graphene,and graphdiyne,which is a powerful assistant in photocatalytic H_(2) production.CNMs can provide abundant adsorption and active sites,charge separation and transport channels,photocatalysts,co‐catalysts and photosensi‐tizers.Then,this review has introduced the strategy for enhancing CNMs in photocatalytic H_(2) pro‐duction based on recent research.Finally,the challenge faced by CNMs in photocatalytic H_(2) produc‐tion has prospected.
基金This study acknowledges the supports by the Shenzhen Science and Technology Innovation Commission under Grant JCYJ20180507181806316the City University of Hong Kong under project Fundamental Investigation of Phase Transformative Materials for Energy Application(Project No.9610399)the Shenzhen Research Institute,City University of Hong Kong.
文摘Metal-organic frameworks(MOFs)are of quite a significance in the field of inorganic-organic hybrid crystals.Especially,MOFs have attracted increasing attention in recent years due to their large specific surface area,desirable electrical conductivity,controllable porosity,tunable geometric structure,and excellent thermal/chemical stability.Some recent studies have shown that carbon materials prepared by MOFs as precursors can retain the privileged structure of MOFs,such as large specific surface area and porous structure and,in contrast,realize in situ doping with heteroatoms(eg,N,S,P,and B).Moreover,by selecting appropriate MOF precursors,the composition and morphology of the carbon products can be easily adjusted.These remarkable structural advantages enable the great potential of MOF-derived carbon as high-performance energy materials,which to date have been applied in the fields of energy storage and conversion systems.In this review,we summarize the latest advances in MOF-derived carbon materials for energy storage applications.We first introduce the compositions,structures,and synthesis methods of MOF-derived carbon materials,and then discuss their applications and potentials in energy storage systems,including rechargeable lithium/sodium-ion batteries,lithium-sulfur batteries,supercapacitors,and so forth,in detail.Finally,we put forward our own perspectives on the future development of MOF-derived carbon materials.