On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient ...On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient and eco-friendly process,mild conditions,and simple post-treatment.The experimental results reveal that a homogeneous deposited film(Cu NCs/CCS nanocomposite film)is generated on the Cu plate(the anode)after electrodeposition,which exhibits an obvious red florescence.The results from TEM observation suggest there are nanoparticles(with the average particle size of 2.3 nm)in the deposited film.Spectral analysis results both demonstrate the existence of Cu NCs in the deposited film.Moreover,the Cu NCs/CCS film modified electrode is directly created through electrodeposition of CCS,which enables promising application in the electrochemical sensing.By means of fluorescence properties of Cu NCs,the Cu NCs/CCS film also owns the potential in fluorescence detection.Therefore,this work builds a novel method for the green synthesis of Cu NCs,meanwhile it offers a convenient and new electrodeposition strategy to prepare polysaccharide-based Cu NCs nanocomposites for uses in functional nanocomposites and bioelectronic devices.展开更多
Composite materials have elicited much interest because of their superior performance in the removal of toxic and radioactive uranyl ions from aqueous solutions.With polyethyleneimine as a functional group,carboxylate...Composite materials have elicited much interest because of their superior performance in the removal of toxic and radioactive uranyl ions from aqueous solutions.With polyethyleneimine as a functional group,carboxylated chitosan as a matrix,and oxidizing activated carbon as a nanofiller,this study synthesized a novel environment-friendly polyethylenimine-functionalized carboxylated chitosan/oxidized activated charcoal(PCO)biocomposite with a unique three-dimensional porous structure.PCO was synthesized through an easy chemical cross-linking method.Detailed characterization certified the formation of the unique three-dimensional porous structure.The obtained PCO was used to remove uranyl ions from an aqueous solution,demonstrating the maximum adsorption capacity of 450 mg·g^(−1).The adsorption capacity of PCO decreased by less than 7.51%after five adsorption-desorption cycles.PCO exhibited good adsorption selectivity(K_(d)=3.45×10^(4) mL·g^(−1))for uranyl ions.The adsorption mechanism of PCO was also discussed.The material showed good potential for application in the treatment of wastewater containing uranyl ions.展开更多
基金Funded by the National Natural Science Foundation of China(No.51873167)the Fundamental Research Funds for the Central Universities(WUT:2022-CL-A1-04)。
文摘On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient and eco-friendly process,mild conditions,and simple post-treatment.The experimental results reveal that a homogeneous deposited film(Cu NCs/CCS nanocomposite film)is generated on the Cu plate(the anode)after electrodeposition,which exhibits an obvious red florescence.The results from TEM observation suggest there are nanoparticles(with the average particle size of 2.3 nm)in the deposited film.Spectral analysis results both demonstrate the existence of Cu NCs in the deposited film.Moreover,the Cu NCs/CCS film modified electrode is directly created through electrodeposition of CCS,which enables promising application in the electrochemical sensing.By means of fluorescence properties of Cu NCs,the Cu NCs/CCS film also owns the potential in fluorescence detection.Therefore,this work builds a novel method for the green synthesis of Cu NCs,meanwhile it offers a convenient and new electrodeposition strategy to prepare polysaccharide-based Cu NCs nanocomposites for uses in functional nanocomposites and bioelectronic devices.
基金This work was financially supported by the basic research project of Sichuan Province for Science and Technology Development(Grant No.2019YJ0355)Outstanding Youth Science and Technology Talents Program of Sichuan(Grant No.19JCQN0085)+1 种基金Key Projects of the Pre-research Fund of the General Armament Department(Grant No.6140720020101)National Defense Technology Foundation Project(Grant No.JSJL2016404B002).
文摘Composite materials have elicited much interest because of their superior performance in the removal of toxic and radioactive uranyl ions from aqueous solutions.With polyethyleneimine as a functional group,carboxylated chitosan as a matrix,and oxidizing activated carbon as a nanofiller,this study synthesized a novel environment-friendly polyethylenimine-functionalized carboxylated chitosan/oxidized activated charcoal(PCO)biocomposite with a unique three-dimensional porous structure.PCO was synthesized through an easy chemical cross-linking method.Detailed characterization certified the formation of the unique three-dimensional porous structure.The obtained PCO was used to remove uranyl ions from an aqueous solution,demonstrating the maximum adsorption capacity of 450 mg·g^(−1).The adsorption capacity of PCO decreased by less than 7.51%after five adsorption-desorption cycles.PCO exhibited good adsorption selectivity(K_(d)=3.45×10^(4) mL·g^(−1))for uranyl ions.The adsorption mechanism of PCO was also discussed.The material showed good potential for application in the treatment of wastewater containing uranyl ions.