Two novel rhodamine-based polystyrene solid-phase fluorescence sensors PS-PA-Ⅰ and PS・PA-Ⅱ with different lengths of polyamines were synthesized for Hg(Ⅱ)determination.Thedetection mechanism involving the Hg(Ⅱ)che...Two novel rhodamine-based polystyrene solid-phase fluorescence sensors PS-PA-Ⅰ and PS・PA-Ⅱ with different lengths of polyamines were synthesized for Hg(Ⅱ)determination.Thedetection mechanism involving the Hg(Ⅱ)chelation-induced spirocycle open of rhodamine was proposed with the aid of theoretical calculation.The stronger N—Hg bond and the longer polyamine chain in PS-PA-Ⅱ led to a better selectivity,much higher and more quickly fluorescence response to Hg(Ⅱ).展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province,China(No.BK20161542)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province,China(No.17KJB150006)the Overseas Visiting Scholar Program for University Prominent Young&Middle-aged Teachers and Presidents of Jiangsu Province,China(No.2017).
文摘Two novel rhodamine-based polystyrene solid-phase fluorescence sensors PS-PA-Ⅰ and PS・PA-Ⅱ with different lengths of polyamines were synthesized for Hg(Ⅱ)determination.Thedetection mechanism involving the Hg(Ⅱ)chelation-induced spirocycle open of rhodamine was proposed with the aid of theoretical calculation.The stronger N—Hg bond and the longer polyamine chain in PS-PA-Ⅱ led to a better selectivity,much higher and more quickly fluorescence response to Hg(Ⅱ).