In this study,intelligent,pH-responsive colorimetric films were prepared by encapsulating anthocyanins in nanocomplexes prepared from glutenin and carboxymethyl chitosan.These nanocomplexes were added to a corn starch...In this study,intelligent,pH-responsive colorimetric films were prepared by encapsulating anthocyanins in nanocomplexes prepared from glutenin and carboxymethyl chitosan.These nanocomplexes were added to a corn starch matrix and used in the freshness monitoring of chilled pork.The effects of anthocyanin-loaded nanocomplexes on the physical,structural,and functional characteristics of the films were investigated.The addition of anthocyanin-loaded nanocomplexes increased the tensile strength,elongation at break,hydrophobicity,and light transmittance of the films while decreasing their water vapor permeability.This is because new hydrogen bonds are formed between the film components,resulting in a more homogeneous and dense structure.The colorimetric film has a significant color response to pH changes.These films were used in experiments on the freshness of chilled pork,in which the pH changes with changing freshness states.The results show that the colorimetric film can monitor changes in the freshness of chilled pork in real time,where orange,pink,and green represent the fresh,secondary fresh,and putrefied states of pork,respectively.Therefore,the intelligent colorimetric film developed in this study has good application potential in the food industry.展开更多
[Objective] In order to study the relations among different positions, degrees of substitution and antioxidant ability. [Method] N, O-carboxymethyl chitosan (NOA, NOB and NOC)with various degrees of substitution (D...[Objective] In order to study the relations among different positions, degrees of substitution and antioxidant ability. [Method] N, O-carboxymethyl chitosan (NOA, NOB and NOC)with various degrees of substitution (DS)were obtained by etherizing chito-oligosacchaside. Their structure and substituted degree were characterized and their antioxldant activity to·OH was evaluated. [ Result] The IC50 s of NOA ,NOB and NOC were 0.15 ,0. 29 ,0. 23 mg/ml while their DSs of -NH2 position(DSN) were 0.51,0.29 and 0.38 and DSo were 0. 74 ,0. 84 ,0. 97respectively.[ Conclusion] With the increase of DSN ,antioxidant activity of N,O-carboxymethyl chitosan oligosaccharide to·OH was up.展开更多
Analgesis and wound healing effect of chitosan and carboxymethyl chitosan on scalded rats were investigated. A II degree scald model was established in rats, which was subsequently treated with chitosan and carboxymet...Analgesis and wound healing effect of chitosan and carboxymethyl chitosan on scalded rats were investigated. A II degree scald model was established in rats, which was subsequently treated with chitosan and carboxymethyl chitosan solution, respectively. The concentration of bradykinin and 5-hydroxytryptophan was detected by assaying enzyme-linked immunosorbent. Healing condition was observed and pathological sections were made to determine the healing effect of chitosan and carboxymethyl chitosan. Results showed that the concentration of bradykinin and 5-hydroxytryptophan peaked at the third hour post-wound in all groups, while the concentration of hydroxyproline peaked at the seventh day post-wound in both chitosan and carboxymethyl chitosan group. The concentration of bradykinin and 5-hydroxytryptophan of carboxymethyl chitosan group was significantly lower than that of control(P < 0.05), while that of chitosan group was similar to that of control(P > 0.05). These findings indicated that carboxymethyl chitosan reduced the concentration of algogenic substances, resulting in analgesia. During the whole recovery process, the hydroxyproline concentration in chitosan and carboxymethyl chitosan group on day 3 and 7 was significantly higher than that of control(P < 0.01); however the significance of such a highness decreased on day 14(P < 0.05). These findings indicated that chitosan and carboxymethyl chitosan accelerated tissue repair. Meanwhile, chitosan performed better in healing than carboxymethyl chitosan in both decrustation and healing time. In conclusion, carboxymethyl chitosan showed significant analgesis and wound-healing promotion effect, but chitosan only showed wound-healing promotion effect.展开更多
In order to improve the mechanical and water swelling properties of the chitosan (CS) film, a series of transparent films were prepared by blending 2%(weight) chitosan acetic acid solution with 1.5%(weight) carboxymet...In order to improve the mechanical and water swelling properties of the chitosan (CS) film, a series of transparent films were prepared by blending 2%(weight) chitosan acetic acid solution with 1.5%(weight) carboxymethylated konjac glucomannan (CMKGM) aqueous solution according to predetermined ratio and drying at 30°C. The morphological structure, miscibility, thermal stability, mechanical properies, and swelling capacity of the blend films were studied by infrared (IR), X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron micrograph (SEM), and measurements of the mechanical properties and swelling properties. The results demonstrated that there was strong interaction and good miscibility between CS and CMKGM resulted from intermolecular hydrogen bonding and electrostatic force. The mechanical properties in dry state and wet state, thermostability, and water swelling properties of the blend films were obviously improved. The best values of the tensile strength in the dry and wet state achieved 89 MPa and 49 MPa, respectively, when the CMKGM content was 30%(weight). The CS/ CMKGM blend films provided promising biomedical applications.展开更多
Effects of carboxymethyl-chitosan with different molecular weights on wound healing were investigated in vivo and in vitro.A second degree burn model was performed in rats and the accelerative effects of carboxymethyl...Effects of carboxymethyl-chitosan with different molecular weights on wound healing were investigated in vivo and in vitro.A second degree burn model was performed in rats and the accelerative effects of carboxymethyl-chitosan on wound repair were observed.Contents of transforming growth factor(TGF)-β1,interleukin(IL)-6 and matrix metalloproteinase(MMP)-1 in wounds were determined by enzyme-linked immunosorbent assay(ELISA).In vitro study evaluated the influence of carboxy-methyl-chitosan on cytokines secretion of fibroblasts and macrophages.In vivo results showed that carboxymethyl-chitosan effec-tively accelerated the wound healing process in burned rats(P<0.05).Levels of TGF-β1,IL-6 and MMP-1 in carboxymethyl-chitosan groups were significantly elevated,compared with control group(P<0.05).In vitro results indicated that carboxymethyl-chitosan significantly promoted the proliferation of fibroblasts and stimulated its IL-8 and IL-10 secretion at different incubation time,but it did not affect collagen secretion of fibroblasts.Carboxymethyl-chitosan enhanced phagocytosis ability of macrophages,and in-creased its tumor necrosis factor(TNF)-α secretion.In conclusion,carboxymethyl-chitosan promoted wound healing by activating macrophages,accelerating fibroblasts growth and exerting considerable effects on the secretion of a series of cytokines.展开更多
Novel insulin-loaded nanoparticles based on hydroxypropyl-β-cyclodextrin modified carboxymethyl chitosan(CMC-HP-β-CD) were prepared to improve the oral bioavailability of insulin. The CMC-HP-β-CD was characterize...Novel insulin-loaded nanoparticles based on hydroxypropyl-β-cyclodextrin modified carboxymethyl chitosan(CMC-HP-β-CD) were prepared to improve the oral bioavailability of insulin. The CMC-HP-β-CD was characterized by FT-IR spectroscopy and 1H-NMR spectra. The insulin-loaded nanoparticles were prepared through crosslinking with calcium ions, and the morphology and size of the prepared nanoparticles were characterized by transmission electron microscopy(TEM) and dynamic light scattering(DLS). Cumulative release in vitro study was performed respectively in simulated gastric medium fluid(SGF, p H=1.2), simulated intestinal fluid(SIF, p H=6.8) and simulated colonic fluid(SCF, p H=7.4). The encapsulation efficiency of insulin was up to 87.14 ± 4.32% through high-performance liquid chromatography(HPLC). Statistics indicated that only 15% of the encapsulated insulin was released from the CMC-HP-β-CD nanoparticles in 36 h in SGF, and about 50% of the insulin could be released from the nanoparticles in SIF, whereas more than 80% was released in SCF. In addition, the solution containing insulin nanoparticles could effectively reduce the blood glucose level of diabetic mice. The cytotoxicity test showed that the samples had no cytotoxicity. CMC-HP-β-CD nanoparticles are promising candidates as potential carriers in oral insulin delivery systems.展开更多
To improve the solubility and bioactivity of chitosan,a new class of carboxymethyl chitosan derivatives possessing sulfonium salts was successfully designed and synthesized,including Methyl sulfi de carboxymethyl chit...To improve the solubility and bioactivity of chitosan,a new class of carboxymethyl chitosan derivatives possessing sulfonium salts was successfully designed and synthesized,including Methyl sulfi de carboxymethyl chitosan(MCMCS),Ethyl sulfi de carboxymethyl chitosan(ECMCS),Propyl sulfi de carboxymethyl chitosan(PCMCS),and Butyl sulfi de carboxymethyl chitosan(BCMCS).To determine the structure of the new class of the derivatives,methods of the Fourier transform infrared spectroscopy(FT-IR),^(1)H nuclear magnetic resonance spectrometer(^(1)H NMR),and^(13)C nuclear magnetic resonance spectrometer(^(13)C NMR)were used.Moreover,the antioxidant activity of the derivatives for three types of free radicals,i.e.,hydroxyl radical,superoxide radical,and 1,1-diphenyl-2-picrylhydrazyl(DPPH)radical was evaluated in vitro.In addition,the L929 cells were adopted to test the cytotoxicity of chitosan and its derivatives by CCK-8 assay.The class of the carboxymethyl chitosan derivatives showed a strong scavenging ability against the three free radicals at 1.6 mg/mL,with scavenging rate of over 70%and some up to 100%.At this high rate,the overall cell viability in the toxicity test reached more than 80%,indicating that the synthetic derivative had a little cytotoxicity.The results show that the introduction of carboxymethyl group to chitosan increased the water-solubility of chitosan,and the combination of sulfonate ions with diff erent chain lengths further enhanced the antioxidant activity of chitosan.Therefore,the sulfonium-containing carboxymethyl chitosan derivatives had excellent bioactivity with good application prospects in food,biomedicine,and medical fi elds.展开更多
The present study was conducted to investigate the use of stearic acid-grafted carboxymethyl chitosan(SA-CMC) as a downregulator for trans- forming growth factor-β (TGF- β) and vascular endothelial growth factor (VE...The present study was conducted to investigate the use of stearic acid-grafted carboxymethyl chitosan(SA-CMC) as a downregulator for trans- forming growth factor-β (TGF- β) and vascular endothelial growth factor (VEGF) in Ehrlich ascites carcinoma (EAC)-bearing mice. The antitumor effect of stearic acid-grafted carboxymethyl chitosan was assessed by the estimation of TGF- β and VEGF in serum in addition to the estimation of tumor volume, median survival time (MST), percentage of increase in life span (ILS%) as well as the contents of total lipid, DNA and RNA in liver tissues. Hematological profiles (hemoglobin, red blood cells, and platelets) were also assessed. In addition, liver function tests and the redox status were estimated. TGF- β, VEGF, DNA, RNA, and malondialdehyde (MDA) levels, in addition to serum alanine transaminase (ALT) and gamma glutamyl transferase (GGT) activities as well as total white blood cells counts and tumor volume were all highly significantly increased (P < 0.001) in untreated EAC-bearing mice compared to controls. However, hematological profiles, total lipid in liver tissues and serum albumin were highly decreased in EAC-bearing mice compared to controls. All these parameters were restored to the normal levels in SA-CMC treated EAC-bearing mice com- pared to the untreated EAC-bearing mice. It is thus concluded that stearic acid-grafted carboxymethyl chitosan has a remarkable antitumor activity against EAC in Swiss albino mice through downregulation of TGF-β and VEGF.展开更多
Gene-based therapeutics has emerged as a promising approach for human cancer therapy. Among a variety of non-viral vectors, polymer vectors are particularly attractive due to their safety and multivalent groups on the...Gene-based therapeutics has emerged as a promising approach for human cancer therapy. Among a variety of non-viral vectors, polymer vectors are particularly attractive due to their safety and multivalent groups on their surface. This study focuses on guanidinylated O-carboxymethyl chitosan(GOCMCS) along with poly-β-amino ester(PBAE) for si RNA delivery. Binding efficiency of PBAE/si RNA/GOCMCS nanoparticles were characterized by gel electrophoresis. The si RNA-loaded nanoparticles were found to be stable in the presence of RNase A, serum and BALF respectively. Fine particle fraction(FPF) which was determined by a two-stage impinger(TSI) was 57.8% ± 2.6%. The particle size and zeta potential of the nanoparticles were 153.8 ± 12.54 nm and + 12.2 ± 4.94 m V. In vitro cell transfection studies were carried out with A549 cells. The cellular uptake was significantly increased. When the cells were incubated with si Survivin-loaded nanoparticles, it could induce 26.83% ± 0.59% apoptosis of A549 cells and the gene silencing level of survivin expression in A549 cells were 30.93% ± 2.27%. The results suggested that PBAE/GOCMCS nanoparticle was a very promising gene delivery carrier.展开更多
Poly (N-isopropylacrylamide) (PNIPAAm)/carboxymethylated chitosan (CMCH) hydrogels were prepared by irradiating the aqueous solution mixture of NIPAAm and CMCH by 60 Co γ-ray.The effects of feed ratio of NIPAAm...Poly (N-isopropylacrylamide) (PNIPAAm)/carboxymethylated chitosan (CMCH) hydrogels were prepared by irradiating the aqueous solution mixture of NIPAAm and CMCH by 60 Co γ-ray.The effects of feed ratio of NIPAAm and CMCH,temperature,pH and ionic strength on the swelling ratio of PNIPAAm/CMCH hydrogels were studied.The results show that the addition of CMCH shifts the lower critical solution temperature (LCST) of the PNIPAAm hydrogel to higher temperature.The PNIPAAm/CMCH hydrogel displays not only pH-and thermo-sensitivity,but also ion-sensitivity.Differential scanning calorimetry (DSC) was applied for the determination of the LCST of the hydrogel.展开更多
Five kinds of carboxymethyl sulfochitosans with different regions such as N-carboxymethyl-O-sulfochitosan, O-carboxymethyl-N-sulfochitosan, O-carboxymethyl chitosan sulfate, N-carboxymethyl chitosan-6-sulfate, and N,O...Five kinds of carboxymethyl sulfochitosans with different regions such as N-carboxymethyl-O-sulfochitosan, O-carboxymethyl-N-sulfochitosan, O-carboxymethyl chitosan sulfate, N-carboxymethyl chitosan-6-sulfate, and N,O-carboxymethyl -N,O-sulfochitosan were prepared respectively by using differential carboxymethylation and sulfation methods, and their IR spectrum and 13C-NMR spectrum were measured.展开更多
In our previous study,silver nanoparticles were prepared using AgNO_(3) and carboxymethyl chitosan(CMCS)which is commercially available with solar irradiation.In this study,the efficacy and safety of silver nanopartic...In our previous study,silver nanoparticles were prepared using AgNO_(3) and carboxymethyl chitosan(CMCS)which is commercially available with solar irradiation.In this study,the efficacy and safety of silver nanoparticles prepared by this method were evaluated for healing wounds in rats with diabetes.We also attempted to determine the underlying mechanism and influencing factors of the silver nanomaterial preparation method.Compared with growth factors,silver nanoparticles exhibit better healing effects for rats with diabetes.No remnant silver ions were detected in the major organs of these rats after the application of silver nanoparticles.Silver nanoparticles prepared using CMCS are less toxic than those prepared from the conventional method,promote the proliferation of skin fibroblasts,and are promising as a topical medication for infected wounds.An obvious breakage process of the particles is observed during the growth of nanocrystalline silver in CMCS.In this study,we also attempted to determine whether this method is suitable for synthesizing silver nanoparticles using N-trimethyl chitosan chloride and sodium alginate were used in this particular experiment.The characteristic UV-vis absorbance peak of silver nanoparticles was found only in the reaction mixture containing N-trimethyl chitosan chloride.Our study demonstrates that free radicals are the key factor in this silver nanoparticle preparation method.展开更多
Soy protein isolate/carboxymethyl chitosan (SPI/CMCH) blended films incorporated with glycerol were prepared using solution casting to investigate the effects of the SPI and CMCH ratios (100:0, 88:12, 67:33, 50...Soy protein isolate/carboxymethyl chitosan (SPI/CMCH) blended films incorporated with glycerol were prepared using solution casting to investigate the effects of the SPI and CMCH ratios (100:0, 88:12, 67:33, 50:50, 33:67, 12:88, 0:100) on the water sorption isotherm. The moisture sorption isotherm of the SPI/CMCH blended films was determined using various relative humidity's (16%, 35%, 55% and 76% RH) at 25 ± 1℃. The isotherms showed that the equilibrium moisture content (EMC) of the films increased with increasing CMCH content and the EMC value sharply increased above aw = 0.55. Understanding of sorption isotherms is important for prediction of moisture sorption properties of films via moisture sorption empirical models. The Guggenheim-Oswin, Brunauer-Emmett-Teller (BET), and Anderson-de Boer (GAB) sorption model predictions were tested against the experimental data. The root mean square (RMS) values from the Oswin, BET, and GAB models respectively ranged from 698.54 to 1,557.54, 38.85 to 58.30, and 52.52 to 95.95. Therefore, the BET model was found to be the best-fit model for SPI/CMCH blended films at 25 ± 1 ℃.展开更多
Silver nanoparticles were prepared by microwave irradiation of silver nitrate solution with carboxymethyl chitosan as reducing agent and a stabilizer. The optical properties, morphology and structure were characterize...Silver nanoparticles were prepared by microwave irradiation of silver nitrate solution with carboxymethyl chitosan as reducing agent and a stabilizer. The optical properties, morphology and structure were characterized using UV–Visible spectrophotometer, transmission electron microscope (TEM) and X-ray diffraction (XRD). Appearance of surface plasmon band at 413 nm indicated the formation of silver nanoparticles within 5 s microwave irradiation. TEM images show most silver nanoparticles are between 2 nm and 20 nm. XRD results identified the nanoparticles as face-centered cubic phase.展开更多
Original chitosan with M-v of 2.7 x 10(5) was degraded by irradiation with gamma-rays and a series of low molecular weight O-carboxymethylated chitosans (O-CMCh) were prepared based on the irradiated chitosan. A kinet...Original chitosan with M-v of 2.7 x 10(5) was degraded by irradiation with gamma-rays and a series of low molecular weight O-carboxymethylated chitosans (O-CMCh) were prepared based on the irradiated chitosan. A kinetic model of the irradiation of chitosan was put forward. Results show that the irradiation degradation of chitosan obeys the rule of random degradation and the degree of deacetylation of irradiated chitosan is slightly raised. The antibacterial activity of O-CMCh is significantly influenced by its MW, and a suppositional antibacterial peak appears when M-v is equal to 2 x 10(5).展开更多
Using carboxymethyl chitosan (CM-CTS) as snake resin, B-62 resin crosslinked by,triethylenetetramine (TETA) as cage resin, a series of novel snake-cage type resin weresynthesized. Such factors as the best syntheti...Using carboxymethyl chitosan (CM-CTS) as snake resin, B-62 resin crosslinked by,triethylenetetramine (TETA) as cage resin, a series of novel snake-cage type resin weresynthesized. Such factors as the best synthetic conditions, the swelling and regenerationproperties, and the sorption capacities of the above mentioned resins for metal ions wereinvestigated. The experimental results show these resins have good swelling propertiesand mechanical stability and do not run off in organic and inorganic solvents. Thesorption capacities of them for Cu2+, Ni2+,Zn2+, and Pb2+ were 0.89, 0.54, 0.32, and0.22mmol/g, respectively.展开更多
N, O-carboxymethyl chitosan ( CMCTS ), a kind of biodegradable organic substance, was added to calcium phosphate bone cement (CPC) to prodnce a composite more similar in composition to human bone. The compressive ...N, O-carboxymethyl chitosan ( CMCTS ), a kind of biodegradable organic substance, was added to calcium phosphate bone cement (CPC) to prodnce a composite more similar in composition to human bone. The compressive strength of the new material was inereased by 10 times compared with conventional CPC.展开更多
Residues of pharmaceutical and direct metabolites discharged into the aquatic environment have become a challenge for wastewater treatment facilities due to their increase in concentration and their different physicoc...Residues of pharmaceutical and direct metabolites discharged into the aquatic environment have become a challenge for wastewater treatment facilities due to their increase in concentration and their different physicochemical properties. These emerging contaminants are daily detected in surface water and wastewater discharged by municipalities. To remediate the contaminated water, various methods are currently used including primary, secondary, and tertiary advanced treatments. However, some economic and environmental limitations have forced the scientific community to develop alternative disinfection processes to purify wastewater. As such, the adsorption strategy represents a “green” low-cost and effective solution to remove pollutants from water. In this study, a nanomaterial made of N,O-carboxymethyl chitosan (N,O-CMCS) was prepared using chitosan (CS) and monochloroacetic acid under various conditions. N,O-CMCS electrospun was synthetized with the copolymer polyethylene oxide (PEO) to create nanofiber membranes showing a better specificity toward diversified contaminants depending on the pH of medium. The developed adsorbent was used to remove fluoxetine (FLX) from aqueous solutions. The new nanomaterial was characterised using FTIR, NMR, and SEM techniques. Sorption batch tests were carried out using high-performance liquid chromatography and ultraviolet diode array detector (HPLC-UV DAD) under controlled pH experimental conditions to determine the contaminant removal capacity of the nanomaterial. The promising adsorption results obtained with N,O-CMCS/PEO nanofibers are among the best ones obtained so far in comparison to other commercial and synthetized adsorbents tested for FLX’s adsorption. Kinetic experiments were also performed to investigate effects of contact times on the FLX adsorption. Experimental results were fitted to both common kinetic models pseudo-first and second order. The latter kinetic model described the best the sorption on surface. It revealed a possible chemisorption mechanism with electrostatic bounding for N,O-CMCS/PEO nanofibers.展开更多
基金funded by the Hainan Provincial Natural Science Foundation of China[Grant Number 2019RC031]National Natural Science Foundation of China[Grant Number 31460407].
文摘In this study,intelligent,pH-responsive colorimetric films were prepared by encapsulating anthocyanins in nanocomplexes prepared from glutenin and carboxymethyl chitosan.These nanocomplexes were added to a corn starch matrix and used in the freshness monitoring of chilled pork.The effects of anthocyanin-loaded nanocomplexes on the physical,structural,and functional characteristics of the films were investigated.The addition of anthocyanin-loaded nanocomplexes increased the tensile strength,elongation at break,hydrophobicity,and light transmittance of the films while decreasing their water vapor permeability.This is because new hydrogen bonds are formed between the film components,resulting in a more homogeneous and dense structure.The colorimetric film has a significant color response to pH changes.These films were used in experiments on the freshness of chilled pork,in which the pH changes with changing freshness states.The results show that the colorimetric film can monitor changes in the freshness of chilled pork in real time,where orange,pink,and green represent the fresh,secondary fresh,and putrefied states of pork,respectively.Therefore,the intelligent colorimetric film developed in this study has good application potential in the food industry.
基金Supported by Shanghai Leading Academic Discipline(Project No.T1102)Shanghai Commission of Education Scientific Research Project(07zz134)~~
文摘[Objective] In order to study the relations among different positions, degrees of substitution and antioxidant ability. [Method] N, O-carboxymethyl chitosan (NOA, NOB and NOC)with various degrees of substitution (DS)were obtained by etherizing chito-oligosacchaside. Their structure and substituted degree were characterized and their antioxldant activity to·OH was evaluated. [ Result] The IC50 s of NOA ,NOB and NOC were 0.15 ,0. 29 ,0. 23 mg/ml while their DSs of -NH2 position(DSN) were 0.51,0.29 and 0.38 and DSo were 0. 74 ,0. 84 ,0. 97respectively.[ Conclusion] With the increase of DSN ,antioxidant activity of N,O-carboxymethyl chitosan oligosaccharide to·OH was up.
基金supported by National High-Tech R&D Program of China (863 Program, 2014AA093605)
文摘Analgesis and wound healing effect of chitosan and carboxymethyl chitosan on scalded rats were investigated. A II degree scald model was established in rats, which was subsequently treated with chitosan and carboxymethyl chitosan solution, respectively. The concentration of bradykinin and 5-hydroxytryptophan was detected by assaying enzyme-linked immunosorbent. Healing condition was observed and pathological sections were made to determine the healing effect of chitosan and carboxymethyl chitosan. Results showed that the concentration of bradykinin and 5-hydroxytryptophan peaked at the third hour post-wound in all groups, while the concentration of hydroxyproline peaked at the seventh day post-wound in both chitosan and carboxymethyl chitosan group. The concentration of bradykinin and 5-hydroxytryptophan of carboxymethyl chitosan group was significantly lower than that of control(P < 0.05), while that of chitosan group was similar to that of control(P > 0.05). These findings indicated that carboxymethyl chitosan reduced the concentration of algogenic substances, resulting in analgesia. During the whole recovery process, the hydroxyproline concentration in chitosan and carboxymethyl chitosan group on day 3 and 7 was significantly higher than that of control(P < 0.01); however the significance of such a highness decreased on day 14(P < 0.05). These findings indicated that chitosan and carboxymethyl chitosan accelerated tissue repair. Meanwhile, chitosan performed better in healing than carboxymethyl chitosan in both decrustation and healing time. In conclusion, carboxymethyl chitosan showed significant analgesis and wound-healing promotion effect, but chitosan only showed wound-healing promotion effect.
基金Supported by the National Science Foundation of China( No.2 99770 14 )
文摘In order to improve the mechanical and water swelling properties of the chitosan (CS) film, a series of transparent films were prepared by blending 2%(weight) chitosan acetic acid solution with 1.5%(weight) carboxymethylated konjac glucomannan (CMKGM) aqueous solution according to predetermined ratio and drying at 30°C. The morphological structure, miscibility, thermal stability, mechanical properies, and swelling capacity of the blend films were studied by infrared (IR), X-ray diffraction (XRD), differential thermal analysis (DTA), scanning electron micrograph (SEM), and measurements of the mechanical properties and swelling properties. The results demonstrated that there was strong interaction and good miscibility between CS and CMKGM resulted from intermolecular hydrogen bonding and electrostatic force. The mechanical properties in dry state and wet state, thermostability, and water swelling properties of the blend films were obviously improved. The best values of the tensile strength in the dry and wet state achieved 89 MPa and 49 MPa, respectively, when the CMKGM content was 30%(weight). The CS/ CMKGM blend films provided promising biomedical applications.
基金supported by a grant from National High-Tech R&D Program of China (863 Program, 2007AA091603)
文摘Effects of carboxymethyl-chitosan with different molecular weights on wound healing were investigated in vivo and in vitro.A second degree burn model was performed in rats and the accelerative effects of carboxymethyl-chitosan on wound repair were observed.Contents of transforming growth factor(TGF)-β1,interleukin(IL)-6 and matrix metalloproteinase(MMP)-1 in wounds were determined by enzyme-linked immunosorbent assay(ELISA).In vitro study evaluated the influence of carboxy-methyl-chitosan on cytokines secretion of fibroblasts and macrophages.In vivo results showed that carboxymethyl-chitosan effec-tively accelerated the wound healing process in burned rats(P<0.05).Levels of TGF-β1,IL-6 and MMP-1 in carboxymethyl-chitosan groups were significantly elevated,compared with control group(P<0.05).In vitro results indicated that carboxymethyl-chitosan significantly promoted the proliferation of fibroblasts and stimulated its IL-8 and IL-10 secretion at different incubation time,but it did not affect collagen secretion of fibroblasts.Carboxymethyl-chitosan enhanced phagocytosis ability of macrophages,and in-creased its tumor necrosis factor(TNF)-α secretion.In conclusion,carboxymethyl-chitosan promoted wound healing by activating macrophages,accelerating fibroblasts growth and exerting considerable effects on the secretion of a series of cytokines.
基金Funded by the National Nature Science Foundation of China(No.51273156)the Open Foundation of Hubei key laboratory of Purification and Application of Plant Anti-cancer Active Ingredients(No.HLPAI2014005)
文摘Novel insulin-loaded nanoparticles based on hydroxypropyl-β-cyclodextrin modified carboxymethyl chitosan(CMC-HP-β-CD) were prepared to improve the oral bioavailability of insulin. The CMC-HP-β-CD was characterized by FT-IR spectroscopy and 1H-NMR spectra. The insulin-loaded nanoparticles were prepared through crosslinking with calcium ions, and the morphology and size of the prepared nanoparticles were characterized by transmission electron microscopy(TEM) and dynamic light scattering(DLS). Cumulative release in vitro study was performed respectively in simulated gastric medium fluid(SGF, p H=1.2), simulated intestinal fluid(SIF, p H=6.8) and simulated colonic fluid(SCF, p H=7.4). The encapsulation efficiency of insulin was up to 87.14 ± 4.32% through high-performance liquid chromatography(HPLC). Statistics indicated that only 15% of the encapsulated insulin was released from the CMC-HP-β-CD nanoparticles in 36 h in SGF, and about 50% of the insulin could be released from the nanoparticles in SIF, whereas more than 80% was released in SCF. In addition, the solution containing insulin nanoparticles could effectively reduce the blood glucose level of diabetic mice. The cytotoxicity test showed that the samples had no cytotoxicity. CMC-HP-β-CD nanoparticles are promising candidates as potential carriers in oral insulin delivery systems.
基金Supported by the National Key R&D Program of China(No.2019YFD0900705)the Key Deployment Projects of the Marine Science Research Center of the Chinese Academy of Sciences(No.COMS2020J04)the Natural Science Foundation of Shandong Province of China(No.ZR2019BD064)。
文摘To improve the solubility and bioactivity of chitosan,a new class of carboxymethyl chitosan derivatives possessing sulfonium salts was successfully designed and synthesized,including Methyl sulfi de carboxymethyl chitosan(MCMCS),Ethyl sulfi de carboxymethyl chitosan(ECMCS),Propyl sulfi de carboxymethyl chitosan(PCMCS),and Butyl sulfi de carboxymethyl chitosan(BCMCS).To determine the structure of the new class of the derivatives,methods of the Fourier transform infrared spectroscopy(FT-IR),^(1)H nuclear magnetic resonance spectrometer(^(1)H NMR),and^(13)C nuclear magnetic resonance spectrometer(^(13)C NMR)were used.Moreover,the antioxidant activity of the derivatives for three types of free radicals,i.e.,hydroxyl radical,superoxide radical,and 1,1-diphenyl-2-picrylhydrazyl(DPPH)radical was evaluated in vitro.In addition,the L929 cells were adopted to test the cytotoxicity of chitosan and its derivatives by CCK-8 assay.The class of the carboxymethyl chitosan derivatives showed a strong scavenging ability against the three free radicals at 1.6 mg/mL,with scavenging rate of over 70%and some up to 100%.At this high rate,the overall cell viability in the toxicity test reached more than 80%,indicating that the synthetic derivative had a little cytotoxicity.The results show that the introduction of carboxymethyl group to chitosan increased the water-solubility of chitosan,and the combination of sulfonate ions with diff erent chain lengths further enhanced the antioxidant activity of chitosan.Therefore,the sulfonium-containing carboxymethyl chitosan derivatives had excellent bioactivity with good application prospects in food,biomedicine,and medical fi elds.
文摘The present study was conducted to investigate the use of stearic acid-grafted carboxymethyl chitosan(SA-CMC) as a downregulator for trans- forming growth factor-β (TGF- β) and vascular endothelial growth factor (VEGF) in Ehrlich ascites carcinoma (EAC)-bearing mice. The antitumor effect of stearic acid-grafted carboxymethyl chitosan was assessed by the estimation of TGF- β and VEGF in serum in addition to the estimation of tumor volume, median survival time (MST), percentage of increase in life span (ILS%) as well as the contents of total lipid, DNA and RNA in liver tissues. Hematological profiles (hemoglobin, red blood cells, and platelets) were also assessed. In addition, liver function tests and the redox status were estimated. TGF- β, VEGF, DNA, RNA, and malondialdehyde (MDA) levels, in addition to serum alanine transaminase (ALT) and gamma glutamyl transferase (GGT) activities as well as total white blood cells counts and tumor volume were all highly significantly increased (P < 0.001) in untreated EAC-bearing mice compared to controls. However, hematological profiles, total lipid in liver tissues and serum albumin were highly decreased in EAC-bearing mice compared to controls. All these parameters were restored to the normal levels in SA-CMC treated EAC-bearing mice com- pared to the untreated EAC-bearing mice. It is thus concluded that stearic acid-grafted carboxymethyl chitosan has a remarkable antitumor activity against EAC in Swiss albino mice through downregulation of TGF-β and VEGF.
基金This work was supported by the 3rd Jiangsu Overseas Research&Training Program for University Prominent Young&Middleaged Teachers and Presidentsthe College Students Innovation Project for the R&D of Novel Drugs[No.J1310032]And we would like to thank cell and molecular biology experiment platform of China Pharmaceutical University for the assistance with relevant test items.
文摘Gene-based therapeutics has emerged as a promising approach for human cancer therapy. Among a variety of non-viral vectors, polymer vectors are particularly attractive due to their safety and multivalent groups on their surface. This study focuses on guanidinylated O-carboxymethyl chitosan(GOCMCS) along with poly-β-amino ester(PBAE) for si RNA delivery. Binding efficiency of PBAE/si RNA/GOCMCS nanoparticles were characterized by gel electrophoresis. The si RNA-loaded nanoparticles were found to be stable in the presence of RNase A, serum and BALF respectively. Fine particle fraction(FPF) which was determined by a two-stage impinger(TSI) was 57.8% ± 2.6%. The particle size and zeta potential of the nanoparticles were 153.8 ± 12.54 nm and + 12.2 ± 4.94 m V. In vitro cell transfection studies were carried out with A549 cells. The cellular uptake was significantly increased. When the cells were incubated with si Survivin-loaded nanoparticles, it could induce 26.83% ± 0.59% apoptosis of A549 cells and the gene silencing level of survivin expression in A549 cells were 30.93% ± 2.27%. The results suggested that PBAE/GOCMCS nanoparticle was a very promising gene delivery carrier.
基金supported by the Shanghai Nano-material Project Foundation (Grant No.0452NM024)the Shanghai Leading Academic Discipline Project (Grant No.T0105)
文摘Poly (N-isopropylacrylamide) (PNIPAAm)/carboxymethylated chitosan (CMCH) hydrogels were prepared by irradiating the aqueous solution mixture of NIPAAm and CMCH by 60 Co γ-ray.The effects of feed ratio of NIPAAm and CMCH,temperature,pH and ionic strength on the swelling ratio of PNIPAAm/CMCH hydrogels were studied.The results show that the addition of CMCH shifts the lower critical solution temperature (LCST) of the PNIPAAm hydrogel to higher temperature.The PNIPAAm/CMCH hydrogel displays not only pH-and thermo-sensitivity,but also ion-sensitivity.Differential scanning calorimetry (DSC) was applied for the determination of the LCST of the hydrogel.
基金supported by the Development Project of Science and Technology of Qingdao(02-1-Kchhh-58)National‘863’High Technology Project of China(819-07-03)
文摘Five kinds of carboxymethyl sulfochitosans with different regions such as N-carboxymethyl-O-sulfochitosan, O-carboxymethyl-N-sulfochitosan, O-carboxymethyl chitosan sulfate, N-carboxymethyl chitosan-6-sulfate, and N,O-carboxymethyl -N,O-sulfochitosan were prepared respectively by using differential carboxymethylation and sulfation methods, and their IR spectrum and 13C-NMR spectrum were measured.
基金This research was funded by the Science and Technology Fund of Guizhou Province,Grant No.(2016)7125the National Natural Science Foundation of China,Grant No.81660710the Natural Science Research Fund of Guizhou Education Department,Grant No.(2017)042.
文摘In our previous study,silver nanoparticles were prepared using AgNO_(3) and carboxymethyl chitosan(CMCS)which is commercially available with solar irradiation.In this study,the efficacy and safety of silver nanoparticles prepared by this method were evaluated for healing wounds in rats with diabetes.We also attempted to determine the underlying mechanism and influencing factors of the silver nanomaterial preparation method.Compared with growth factors,silver nanoparticles exhibit better healing effects for rats with diabetes.No remnant silver ions were detected in the major organs of these rats after the application of silver nanoparticles.Silver nanoparticles prepared using CMCS are less toxic than those prepared from the conventional method,promote the proliferation of skin fibroblasts,and are promising as a topical medication for infected wounds.An obvious breakage process of the particles is observed during the growth of nanocrystalline silver in CMCS.In this study,we also attempted to determine whether this method is suitable for synthesizing silver nanoparticles using N-trimethyl chitosan chloride and sodium alginate were used in this particular experiment.The characteristic UV-vis absorbance peak of silver nanoparticles was found only in the reaction mixture containing N-trimethyl chitosan chloride.Our study demonstrates that free radicals are the key factor in this silver nanoparticle preparation method.
文摘Soy protein isolate/carboxymethyl chitosan (SPI/CMCH) blended films incorporated with glycerol were prepared using solution casting to investigate the effects of the SPI and CMCH ratios (100:0, 88:12, 67:33, 50:50, 33:67, 12:88, 0:100) on the water sorption isotherm. The moisture sorption isotherm of the SPI/CMCH blended films was determined using various relative humidity's (16%, 35%, 55% and 76% RH) at 25 ± 1℃. The isotherms showed that the equilibrium moisture content (EMC) of the films increased with increasing CMCH content and the EMC value sharply increased above aw = 0.55. Understanding of sorption isotherms is important for prediction of moisture sorption properties of films via moisture sorption empirical models. The Guggenheim-Oswin, Brunauer-Emmett-Teller (BET), and Anderson-de Boer (GAB) sorption model predictions were tested against the experimental data. The root mean square (RMS) values from the Oswin, BET, and GAB models respectively ranged from 698.54 to 1,557.54, 38.85 to 58.30, and 52.52 to 95.95. Therefore, the BET model was found to be the best-fit model for SPI/CMCH blended films at 25 ± 1 ℃.
文摘Silver nanoparticles were prepared by microwave irradiation of silver nitrate solution with carboxymethyl chitosan as reducing agent and a stabilizer. The optical properties, morphology and structure were characterized using UV–Visible spectrophotometer, transmission electron microscope (TEM) and X-ray diffraction (XRD). Appearance of surface plasmon band at 413 nm indicated the formation of silver nanoparticles within 5 s microwave irradiation. TEM images show most silver nanoparticles are between 2 nm and 20 nm. XRD results identified the nanoparticles as face-centered cubic phase.
基金This work was supported by the National Natural Science Foundation of China (No. 50173019).
文摘Original chitosan with M-v of 2.7 x 10(5) was degraded by irradiation with gamma-rays and a series of low molecular weight O-carboxymethylated chitosans (O-CMCh) were prepared based on the irradiated chitosan. A kinetic model of the irradiation of chitosan was put forward. Results show that the irradiation degradation of chitosan obeys the rule of random degradation and the degree of deacetylation of irradiated chitosan is slightly raised. The antibacterial activity of O-CMCh is significantly influenced by its MW, and a suppositional antibacterial peak appears when M-v is equal to 2 x 10(5).
文摘Using carboxymethyl chitosan (CM-CTS) as snake resin, B-62 resin crosslinked by,triethylenetetramine (TETA) as cage resin, a series of novel snake-cage type resin weresynthesized. Such factors as the best synthetic conditions, the swelling and regenerationproperties, and the sorption capacities of the above mentioned resins for metal ions wereinvestigated. The experimental results show these resins have good swelling propertiesand mechanical stability and do not run off in organic and inorganic solvents. Thesorption capacities of them for Cu2+, Ni2+,Zn2+, and Pb2+ were 0.89, 0.54, 0.32, and0.22mmol/g, respectively.
文摘N, O-carboxymethyl chitosan ( CMCTS ), a kind of biodegradable organic substance, was added to calcium phosphate bone cement (CPC) to prodnce a composite more similar in composition to human bone. The compressive strength of the new material was inereased by 10 times compared with conventional CPC.
文摘Residues of pharmaceutical and direct metabolites discharged into the aquatic environment have become a challenge for wastewater treatment facilities due to their increase in concentration and their different physicochemical properties. These emerging contaminants are daily detected in surface water and wastewater discharged by municipalities. To remediate the contaminated water, various methods are currently used including primary, secondary, and tertiary advanced treatments. However, some economic and environmental limitations have forced the scientific community to develop alternative disinfection processes to purify wastewater. As such, the adsorption strategy represents a “green” low-cost and effective solution to remove pollutants from water. In this study, a nanomaterial made of N,O-carboxymethyl chitosan (N,O-CMCS) was prepared using chitosan (CS) and monochloroacetic acid under various conditions. N,O-CMCS electrospun was synthetized with the copolymer polyethylene oxide (PEO) to create nanofiber membranes showing a better specificity toward diversified contaminants depending on the pH of medium. The developed adsorbent was used to remove fluoxetine (FLX) from aqueous solutions. The new nanomaterial was characterised using FTIR, NMR, and SEM techniques. Sorption batch tests were carried out using high-performance liquid chromatography and ultraviolet diode array detector (HPLC-UV DAD) under controlled pH experimental conditions to determine the contaminant removal capacity of the nanomaterial. The promising adsorption results obtained with N,O-CMCS/PEO nanofibers are among the best ones obtained so far in comparison to other commercial and synthetized adsorbents tested for FLX’s adsorption. Kinetic experiments were also performed to investigate effects of contact times on the FLX adsorption. Experimental results were fitted to both common kinetic models pseudo-first and second order. The latter kinetic model described the best the sorption on surface. It revealed a possible chemisorption mechanism with electrostatic bounding for N,O-CMCS/PEO nanofibers.