Pathological cardiac hypertrophy induced by angiotensin Ⅱ (Ang Ⅱ ) can subsequently give rise to heart failure, a leading cause of mortality. Nardosinone is a pharmacologically active compound extracted from the r...Pathological cardiac hypertrophy induced by angiotensin Ⅱ (Ang Ⅱ ) can subsequently give rise to heart failure, a leading cause of mortality. Nardosinone is a pharmacologically active compound extracted from the roots ofNardostachys chinensis, a well-known traditional Chinese medicine. In order to investigate the effects of nardosinone on Ang Ⅱ-induced cardiac cell hypertrophy and the related mechanisms, the myoblast cell line H9c2, derived from embryonic rat heart, was treated with nardosi- none (25, 50, 100, and 200μmol/L) or Ang Ⅱ (1 μmol/L). Then cell surface area and mRNA expression of classical markers of hypertrophy were detected. The related protein levels in PI3K/Akt/mTOR and MEK/ERK signaling pathways were examined by Western blotting. It was found that pretreatment with nardosinone could significantly inhibit the enlargement of cell surface area induced by Ang Ⅱ. The mRNA expression of ANP, BNP and 13-MHC was obviously elevated in Ang Ⅱ-treated H9c2 cells, which could be effectively blocked by nardosinone at the concentration of 100μmol/L. Further study revealed that the protective effects of nardosinone might be mediated by repressing the phosphorylation of related proteins in PI3K/Akt and MEK/ERK signaling pathways. It was suggested that the inhibitory effect of nardosinone on Ang Ⅱ-induced hypertrophy in H9c2 cells might be mediated by targeting PI3K/Akt and MEK/ERK signaling pathways.展开更多
OBJECTIVE To investigate the regulatory effects of icariin(ICA)on cardiac micro⁃vascular endothelial cells(CMEC)after oxygenglucose deprivation reperfusion(OGD/R)injury.METHODS CMEC were subjected to OGD/R treatment t...OBJECTIVE To investigate the regulatory effects of icariin(ICA)on cardiac micro⁃vascular endothelial cells(CMEC)after oxygenglucose deprivation reperfusion(OGD/R)injury.METHODS CMEC were subjected to OGD/R treatment to construct a myocardial ischemiareperfusion model,and were divided into normal,model,low(10μmol·L^(-1)),medium(20μmol·L^(-1))and high(40μmol·L^(-1))ICA group,and high ICA+inhibitor group(40μmol·L^(-1)+20 nmol·L^(-1)).CCK-8 assay was used to assess the protective ability of ICA against CMEC,and cell migration assay and tube-formation assay were used to detect the migration and generation ability of CMEC.The TCMSP database,Swiss-Target database and literature mining methods were used to col⁃lect ICA-related targets,the GeneCards data⁃base was used to collect target genes related to myocardial ischemia/reperfusion,and Cytoscape 3.8.0 software was used to construct a"drug-tar⁃get-disease"network.The potential targets were imported into STRING 11.5 database to obtain the PPI network.GO and KEGG enrichment analyses were performed on the potential targets using the DAVID database.Molecular docking was performed using AutoDock-vina 1.1.2 soft⁃ware.Western blot detected the expression of related proteins.RESULTS After CMEC was subjected to OGD/R treatment,ICA had a protec⁃tive effect at 10^(-1)60μmol·L^(-1);the results of the cell migration assay showed that each group of ICA could promote the migratory effect of CMEC(P<0.01,P<0.01);and the results of tube-for⁃mation assay showed that each group of ICA could significantly promote the generation of branches(P<0.01)and the capillary length exten⁃sion(P<0.05).Network pharmacology collected a total of 23 ICA action targets,1500 disease tar⁃gets and 12 key targets.GO function enrichment analysis found 85 results.KEGG pathway enrich⁃ment analysis found 53 results,involving AGERAGE signaling pathway,sphingolipid signaling pathway and VEGF signaling pathway.Molecu⁃lar docking results showed that ICA had better binding with core targets PRKCB,PRKCA and PTGS2.Western blot results showed that ICA could regulate the expression of PRKCB,PRKCA and PTGS2 proteins.The results of cell migra⁃tion assay,tube-formation assay and protein expression were reversed after addition of PKC inhibitor.CONCLUSION The potential mecha⁃nism of action of ICA against myocardial isch⁃emia-reperfusion injury may be related to the reg⁃ulation of processes such as CMEC migration and angiogenesis,and it functions through the key target gene PKC.展开更多
Cardiovascular diseases represent the world’s leading cause of death. In thisheterogeneous group of diseases, ischemic cardiomyopathies are the mostdevastating and prevalent, estimated to cause 17.9 million deaths pe...Cardiovascular diseases represent the world’s leading cause of death. In thisheterogeneous group of diseases, ischemic cardiomyopathies are the mostdevastating and prevalent, estimated to cause 17.9 million deaths per year.Despite all biomedical efforts, there are no effective treatments that can replacethe myocytes lost during an ischemic event or progression of the disease to heartfailure. In this context, cell therapy is an emerging therapeutic alternative to treatcardiovascular diseases by cell administration, aimed at cardiac regeneration andrepair. In this review, we will cover more than 30 years of cell therapy in cardiology,presenting the main milestones and drawbacks in the field and signalingfuture challenges and perspectives. The outcomes of cardiac cell therapies arediscussed in three distinct aspects: The search for remuscularization byreplacement of lost cells by exogenous adult cells, the endogenous stem cell era,which pursued the isolation of a progenitor with the ability to induce heart repair,and the utilization of pluripotent stem cells as a rich and reliable source ofcardiomyocytes. Acellular therapies using cell derivatives, such as microvesiclesand exosomes, are presented as a promising cell-free therapeutic alternative.展开更多
Objective:To investigate the protective effect of glucagon-like peptid-1(GLP-l) against cardiac microvascular endothelial cell(GTFCs) injured by high glucose.Methods:CMECs were isolated and cultured.Superoxide assay k...Objective:To investigate the protective effect of glucagon-like peptid-1(GLP-l) against cardiac microvascular endothelial cell(GTFCs) injured by high glucose.Methods:CMECs were isolated and cultured.Superoxide assay kit and dihydroethidine(DHE) staining were used to assess oxidative stress.TENEL staining and caspase 3 expression were used to assess the apoptosis of CMECs.H89 was used to inhibit eAMP/PKA pathway:fasudil was used to inhibit Rho/ROCK pathway.The protein expressions of Rho.ROCK uere examined by Western blol analysis.lesults:High glucose increased the production of ROS.the activity of NADPH.the apoptosis rate and the expression level of Rho/ROCK in CMECs.while GLP- 1 decreased high glucose-induced ROS production.the NADPH activity and the apoptosis rate and the expression level of Rho/ROCK in CMECs,the difference were statistically significant(P<0.05).Conclusions:GLP-1 could protect the cardiac microvessels against oxidative stress and apoptosis.The protective effects of GLP-1 are dependent on downstream inhibition of Rho through a cAMP/PKA-dependent manner,resulting in a subsequent decrease in the expression of NADPH oxidase.展开更多
Objective: To study the effect and mechanism of the dysfunction of CD4+ T cells in the disease process of chronic cardiac failure (CHF).Methods:According to different group technologies, 100 CHF patients were divided ...Objective: To study the effect and mechanism of the dysfunction of CD4+ T cells in the disease process of chronic cardiac failure (CHF).Methods:According to different group technologies, 100 CHF patients were divided into the following groups: ischemia group and non-ischemia group, heart function Ⅰ-Ⅱ group and heart function Ⅲ-Ⅳ group, event group and non-event group, and 50 healthy volunteers were included in the control group. Realtime PCR was used to detect transcription factors T-bet and GATA-3 of Th1 and Th2; flow cytometry was applied to determine the ratio of Th17 and Treg cells; ELISA was employed to test cytokines IFN-γ, IL-4, IL-17 and IL-10 of peripheral blood Th1, Th2, Th17 and Treg cells, respectively; ultrasonic cardiogram was used to exploit to LVEF and LVEDd; and electrochemilu minescene immunoassay was used to examine plasma BNP. The differences of all indexes of all groups were analyzed and the correlation between CD4 T cells and clinical indexes was analyzed by Pearson correlation analysis. Results: As compared to the control group, the transcription factors T-bet and GATA-3 of Th1 and Th2, the ratio of cytokines Th17 and IFN-γ, cytokines IL-17, T-bet/GATA-3, IFN-γ/IL-4, Th17 cells/Treg cells, IL-17/IL-10 of the ischemia group and non-ischemia group, heart functionⅠ-Ⅱgroup and heart function Ⅲ-Ⅳ group, event group and non-event group were all increased significantly, while their transcription factor GATA-3 of Th2, cytokines IL4, Treg cells ratio, cytokines IL10 were decreased obviously. The differences showed statistical significance (P < 0.05). The increase or decrease of the partial CD4+ T cells of the ischemia group, heart function Ⅲ-Ⅳ group and event group was more distinctly. The results of Pearson correlation analysis showed that IFN-γ and IL-17 were significantly positively correlated with LVEDd and BNP, IL-4 and IL-10 were also significantly positively correlated with LVEF, but correlated negatively with BNP, and IL-17 was negatively correlative with LVEF. Conclusions: There was a correlation between CHF and the dysfunction of CD4+ T cells showing immune activation phenomenons of deviations from the Th1/Th2 balance towards Th1 and from the Th17/Treg balance towards Th17, which was also related to the types, severity and prognosis of the disease.展开更多
Over the last years, stem cell therapy has emerged asan inspiring alternative to restore cardiac function after myocardial infarction. A large body of evidence has been obtained in this field but there is no conclusiv...Over the last years, stem cell therapy has emerged asan inspiring alternative to restore cardiac function after myocardial infarction. A large body of evidence has been obtained in this field but there is no conclusive data on the efficacy of these treatments. Preclinical studies and early reports in humans have been encouraging and have fostered a rapid clinical translation, but positive results have not been uniformly observed and when present, they have been modest. Several types of stem cells, manufacturing methods and delivery routes have been tested in different clinical settings but direct comparison between them is challenging and hinders further research. Despite enormous achievements, major barriers have been found and many fundamental issues remain to be resolved. A better knowledge of the molecular mechanisms implicated in cardiac development and myocardial regeneration is critically needed to overcome some of these hurdles. Genetic and pharmacological priming together with the discovery of new sources of cells have led to a "second generation" of cell products that holds an encouraging promise in cardiovascular regenerative medicine. In this report, we review recent advances in this field focusing on the new types of stem cells that are currently being tested in human beings and on the novel strategies employed to boost cell performance in order to improve cardiac function and outcomes after myocardial infarction.展开更多
The emergence of cardiac stem cell therapy can be traced to late 2001, when studies in small animal models of myocardial infarction suggested that stem cells could engraft, proliferate, and regenerate myo-cardium. Sub...The emergence of cardiac stem cell therapy can be traced to late 2001, when studies in small animal models of myocardial infarction suggested that stem cells could engraft, proliferate, and regenerate myo-cardium. Subsequent animal laboratory studies showed improved cardiac function, perfusion and survival compared to controls (Figure 1). Within two years, the first clinical trials of stem cell therapy began to appear, and we now have several trials of intracoronary infusion of bone marrow cells with more than one year follow-up. Although this clinical therapy has proven to be safe, the magnitude of improvement in objective measures like ejection fraction has been modest, and the therapy has not entered clinical practice. In the absence of a large prospective randomized trial, the field has moved back to the laboratory. This manuscript aims to provide clinicians with a broad overview of this complex field by briefly reviewing the existing status of clinical myocardial regeneration therapy, then describing selected examples from the laboratory research approaches that may provide a platform for new and potentially increasingly effective clinical strategies.展开更多
BACKGROUND: Numerous studies have shown that magnetic resonance imaging (MRI) can detect survival and migration of super paramagnetic iron oxide-labeled stem cells in models of focal cerebral infarction. OBJECTIVE...BACKGROUND: Numerous studies have shown that magnetic resonance imaging (MRI) can detect survival and migration of super paramagnetic iron oxide-labeled stem cells in models of focal cerebral infarction. OBJECTIVE: To observe distribution of bone marrow mesenchymal stem cells (BMSCs) in a rat model of global brain ischemia following cardiac arrest and resuscitation, and to investigate the feasibility of tracing iron oxide-labeled BMSCs using non-invasive MRI. DESIGN, TIME AND SETTING: The randomized, controlled, molecular imaging study was performed at the Linbaixin Medical Research Center, Second Affiliated Hospital, Sun Yat-sen University, and the Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, China from October 2006 to February 2009. MATERIALS: A total of 40 clean, Sprague Dawley rats, aged 6 weeks and of either gender, were supplied by the Experimental Animal Center, Sun Yat-sen University, China, for isolation of BMSCs. Feridex (iron oxide), Gyroscan Inetra 1.5T MRI system, and cardiopulmonary resuscitation device were used in this study. METHODS: A total of 30 healthy, male Sprague Dawiey rats, aged 6 months, were used to induce ventricular fibrillation using alternating current. After 8 minutes, the rats underwent 6-minute chest compression and mechanical ventilation, followed by electric defibrillation, to establish rat models of global brain ischemia due to cardiac arrest and resuscitation. A total of 24 successful models were randomly assigned to Feridex-labeled and non-labeled groups (n = 12 for each group). At 2 hours after resuscitation, 5 ×10^8 Feridex-labeled BMSCs, with protamine sulfate as a carrier, and 5 ×10^6 non-labeled BMSCs were respectively transplanted into both groups of rats through the right carotid artery (cells were harvested in 1 mL phosphate buffered saline). MAIN OUTCOME MEASURES: Feridex-labeled BMSCs were observed by Prussian blue staining and electron microscopy. Signal intensity, celluar viability, and proliferative capacity of BMSCs were measured using MRI, Trypan blue test, and M-IT assay, respectively. Distribution of transplanted cells was observed in rats utilizing MRI and Prussian blue staining prior to and 1, 3, 7, and 14 days after transplantation. RESULTS: Prussian blue staining displayed many blue granules in the Feridex-labeled BMSCs. High density of iron granules was observed in the cytoplasm under electron microscopy. According to MRI results, and compared with the non-labeled group, the signal intensity was decreased in the Feridex-labeled group (P 〈 0.05). The decrease was most significant in the 50 pg/mL Feridex-labeled group (P 〈 0.01). There were no significant differences in celluar viability and proliferation of BMSCs between the Feridex-labeled and non-labeled groups after 1 week (P 〉 0.05). Low-signal lesions were detected in the rat hippocampus and temporal cortex at 3 days after transplantation. The low-signal lesions were still detectable at 14 days, and positively stained cells were observed in the hippocampus and temporal cortex using Prussian blue staining. There were no significant differences in signal intensity in the non-labeled group. CONCLUSION: BMSC transplantation traversed the blood-brain barrier and distributed into vulnerable zones in a rat model of cardiac arrest-induced global brain ischemia. MRI provided a non-invasive method to in vivo dynamically and spatially trace Feridex-labeled BMSCs after transplantation.展开更多
The purpose of this research was to study the effect of hypoxia on the Ca^2+ concentration in broiler's cardiac muscle cells (CMCs). The concentration of Ca^2+ in the CMC was observed using a laser scanning confo...The purpose of this research was to study the effect of hypoxia on the Ca^2+ concentration in broiler's cardiac muscle cells (CMCs). The concentration of Ca^2+ in the CMC was observed using a laser scanning confocal microscope (LSCM). The results showed that hypoxia could significantly increase intracellular Ca^2+(normal oxygen, 99.3 +_ 13.1; hypoxia, 129.4 +_ 24.3, P 〈 0.01) in CMCs. The Ca^2+ antagonist (nifedipine, verapamil) could significantly restrain the Ca^2+ influx across the cell membrane of CMC treated by hypoxia (CMC: hypoxia + verapamil, 100.9± 28.2; hypoxia + nifedipine, 107.6± 27.7; P 〈 0.01). The results showed hypoxia could increase intracellular Ca^2+ concentration of CMC, and the Ca^2+ antagonist could restrain the Ca^2+ influx across the cell membrane of CMC treated by hypoxia.展开更多
Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs.Since the inception of the field several decades ago,regenerative medicine...Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs.Since the inception of the field several decades ago,regenerative medicine therapies,namely stem cells,have received significant attention in preclinical studies and clinical trials.Apart from their known potential for differentiation into the various body cells,stem cells enhance the organ's intrinsic regenerative capacity by altering its environment,whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration.Recently,research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells(CSCs/CPCs).The global burden of cardiovascular diseases’morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy.This review will discuss the nature of each of the CSCs/CPCs,their environment,their interplay with other cells,and their metabolism.In addition,important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells.Moreover,the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration.Finally,the novel role of nanotechnology in cardiac regeneration will be explored.展开更多
In this study we tried to investigate the effect of fructose-1,6-diphosphate and HTK solution on protecting primary cardiac muscle cells of rat with cold preservation. The primary cardiac muscle cells of rat were cult...In this study we tried to investigate the effect of fructose-1,6-diphosphate and HTK solution on protecting primary cardiac muscle cells of rat with cold preservation. The primary cardiac muscle cells of rat were cultured in vitro with four preservation solutions respectively: 0.9 % sodium chloride solution (group A), FDP (group B), HTK solution (group C) and a mixture of FDP and HTK solution (group D). The cells were preserved for 6, 8 and 10 h at 0-4 ℃. The values of AST and LDH-L and the Na+-K+ ATPase activity in cardiac muscle cells were detected, and the survival rate of cardiac muscle cells was detected with trypan blue staining. The values of AST and LDH-L in group C and group D were remarkable lower those in group A and group B (P<0.001), while the Na+-K+ ATPase activity and the survival rate of cells in group C and group D were much higher than those in group A and group B (P<0.001). The values of AST and LDH-L after 6 hours in group D decreased much more than those in group C (P<0.01), while the Na+-K+ ATPase activity and the survival rate of cells in group D improved more than those in group C (P<0.01). Both of the HTK solution and the mixture of HTK and FDP solution have an evident effect on protecting the primary cardiac muscle cells of rat in vitro with cold preservation, Compared with the HTK solution, the mixture solution has a better short-term protective effect.展开更多
Causative mutations and variants associated with cardiac diseases have been found in genes encoding cardiac ion channels, accessory proteins, cytoskeletal components, junctional proteins, and signaling molecules. In m...Causative mutations and variants associated with cardiac diseases have been found in genes encoding cardiac ion channels, accessory proteins, cytoskeletal components, junctional proteins, and signaling molecules. In most cases the functional evaluation of the genetic alterationhas been carried out by expressing the mutated proteins in in-vitro heterologous systems. While these studies have provided a wealth of functional details that have greatly enhanced the understanding of the pathological mechanisms, it has always been clear that heterologous expression of the mutant protein bears the intrinsic limitation of the lack of a proper intracellular environment and the lack of pathological remodeling. The results obtained from the application of the next generation sequencing technique to patients suffering from cardiac diseases have identified several loci, mostly in non-coding DNA regions, which still await functional analysis. The isolation and culture of human embryonic stem cells has initially provided a constant source of cells from which cardiomyocytes(CMs) can be obtained by differentiation. Furthermore, the possibility to reprogram cellular fate to a pluripotent state, has opened this process to the study of genetic diseases. Thus induced pluripotent stem cells(i PSCs) represent a completely new cellular model that overcomes the limitations of heterologous studies. Importantly, due to the possibility to keep spontaneously beating CMs in culture for several months, during which they show a certain degree of maturation/aging, this approach will also provide a system in which to address the effect of long-term expression of the mutated proteins or any other DNA mutation, in terms of electrophysiological remodeling. Moreover, since i PSC preserve the entire patients' genetic context, the system will help the physicians in identifying the most appropriate pharmacological intervention to correct the functional alteration. This article summarizes the current knowledge of cardiac genetic diseases modelled with i PSC.展开更多
AIM:To study the expression of embryonal markers by fetal cardiac mesenchymal stem cells(fC-MSC)and their differentiation into cells of all the germ layers. METHODS:Ten independent cultures of rat fCMSC were set up fr...AIM:To study the expression of embryonal markers by fetal cardiac mesenchymal stem cells(fC-MSC)and their differentiation into cells of all the germ layers. METHODS:Ten independent cultures of rat fCMSC were set up from cells derived from individual or pooled fetal hearts and studies given below were carried out at passages 3,6,15 and 21.The phenotypic markers CD29,CD31,CD34,CD45,CD73,CD90, CD105,CD166 and HLA-DR were analyzed by flow cytometry.The expression of embryonal markers Oct-4, Nanog,Sox-2,SSEA-1,SSEA-3,SSEA-4,TRA-1-60 and TRA 1-81 were studied by immunocytochemistry.The fC-MSC treated with specific induction medium were evaluated for their differentiation into(1)adipocytes and osteocytes(mesodermal cells)by Oil Red O and Alizarin Red staining,respectively,as well as by expression of lipoprotein lipase,PPARγ2 genes in adipocytes and osteopontin and RUNX2 genes in osteocytes by reverse-transcription polymerase chain reaction(RT- PCR);(2)neuronal(ectodermal)cells by expression of neuronal Filament-160 and Glial Fibrillar Acidic Protein by RT-PCR and immunocytochemistry;and(3)hepa- tocytic(endodermal)cells by expression of albumin by RT-PCR and immunocytochemistry,glycogen deposits by Periodic Acid Schiff staining and excretion of urea into the culture supernatant. RESULTS:The fC-MSC expressed CD29,CD73,CD90, CD105,CD166 but lacked expression of CD31,CD34, CD45 and HLA-DR.They expressed embryonal markers,viz.Oct-4,Nanog,Sox-2,SSEA-1,SSEA-3,SSEA-4, TRA-1-81 but not TRA-1-60.On treatment with specific induction media,they differentiated into adipocytes and osteocytes,neuronal cells and hepatocytic cells. CONCLUSION:Our results together suggest that fCMSC are primitive stem cell types with a high degree of plasticity and,in addition to their suitability for cardiovascular regenerative therapy,they may have a wide spectrum of therapeutic applications in regenerative medicine.展开更多
BACKGROUND Secondary cardiac involvement by lymphoma has received limited attention in the medical literature, despite its grave prognosis. Although chemotherapy improves patients' survival, a subgroup of treated ...BACKGROUND Secondary cardiac involvement by lymphoma has received limited attention in the medical literature, despite its grave prognosis. Although chemotherapy improves patients' survival, a subgroup of treated patients dies suddenly due to myocardial rupture following chemotherapy initiation. Reducing the initial chemotherapy dose with dose escalation to standard doses may be effective in minimizing this risk but the data are limited. We report on the successful management of a patient with disseminated diffuse large B-cell lymphoma(DLBCL) involving the heart using such approach.CASE SUMMARY An 18-year-old male presented to our hospital with six months history of progressive dyspnea, orthopnea and cough. On physical examination, the patient was found to have a plethoric and mildly edematous face, fixed elevation of the right internal jugular vein, suggestive of superior vena cava obstruction, and a pelvic mass. Investigations during admission including a thoracoabdominal computed tomography(CT) scan with CT guided biopsy of the pelvic mass,echocardiography and cardiac magnetic resonance imaging led to the diagnosis of disseminated DLBCL with cardiac involvement. The patients were successfully treated with chemotherapy dose reduction followed by dose escalation to standard doses, under the guidance of cardiac imaging. The patient completed chemotherapy and underwent a successful bone marrow transplant. He is currently in remission and has a normal left ventricular function.CONCLUSION Imaging-guided chemotherapy dosing may minimize the risk of myocardial rupture in cardiac lymphoma. Data are limited. Management should be individualized.展开更多
Objectives To investigate the anti-apoptotic effects of mesenchymal stem cells (MSCs) on hypoxic injured cardiac myocytes in vitro. Methods MSCs were isolated from bone marrow of Sprague-Dawley (SD) rats, and card...Objectives To investigate the anti-apoptotic effects of mesenchymal stem cells (MSCs) on hypoxic injured cardiac myocytes in vitro. Methods MSCs were isolated from bone marrow of Sprague-Dawley (SD) rats, and cardiac myocytes from neonatal rats. The rat cardiac myocytes were co-cultured with MSCs or MSC-conditioned media in anoxia (95% N2 ±5% CO2) for 72 hours. Cell apoptosis was measured by Hoechst 33258 staining. The expression of Bcl-2 and Bax in cardiac myocytes was tested by Western Blot. Results The apoptotic rate was 51.6% ± 2.4% when cardiac myocytes were cultured in continuous hypoxia and was significantly decreased when cardiac myocytes were cocultured with MSCs or MSC-conditioned media ( 15.1% ± 5.4% and 24. 0% ± 4.2% respectively, P 〈 0. 001 ). The decreased expression of Bax in the cardiac myocytes was greatly related to the decreasing of apoptosis, but there was no difference in Bcl-2 expression among these groups. Conclusions Co-cultured MSCs showed significant anti-apoptotic effects on cardiac myocytes in continuous hypoxia. The mechanism may be the interact of cell to cell and paracrine of cytokines which effected the expression of Bax in the cardiac myocytes.展开更多
Despite optimal interventional and medical therapy, ischemic heart disease is still an important cause of morbidity and mortality worldwide. Although not included in standard of care rehabilitation, stem cell therapy(...Despite optimal interventional and medical therapy, ischemic heart disease is still an important cause of morbidity and mortality worldwide. Although not included in standard of care rehabilitation, stem cell therapy(SCT) could be a solution for prompting cardiac regeneration. Multiple studies have been published from the beginning of SCT until now, but overall no unanimous conclusion could be drawn in part due to the lack of appropriate endpoints. In order to appreciate the impact of SCT, multiple markers from different categories should be considered: Structural, biological, functional, physiological, but also major adverse cardiac events or quality of life. Imaging end-points are among the most used-especially left ventricle ejection fraction(LVEF) measured through different methods. Other imaging parameters are infarct size, myocardial viability and perfusion. The impact of SCT on all of the aforementioned end-points is controversial and debatable. 2 D-echocardiography is widely exploited, but new approaches such as tissue Doppler, strain/strain rate or 3 D-echocardiography are more accurate, especially since the latter one is comparable with the MRI gold standard estimation of LVEF. Apart from the objective parameters, there are also patient-centered evaluations to reveal the benefits of SCT, such as quality of life and performance status, the most valuable from the patient point of view. Emerging parameters investigating molecular pathways such as non-coding RNAs or inflammation cytokines have a high potential as prognostic factors. Due to the disadvantages of current techniques, new imaging methods with labelled cells tracked along their lifetime seem promising, but until now only pre-clinical trials have been conducted in humans. Overall, SCT is characterized by high heterogeneity not only in preparation, administration and type of cells, but also in quantification of therapy effects.展开更多
Renal cell carcinoma is a common urological malignancy with the unique ability to invade the inferior vena cava(IVC) and to extend into the right atrium of the heart. Of those with Renal cell carcinoma only 4%-25% are...Renal cell carcinoma is a common urological malignancy with the unique ability to invade the inferior vena cava(IVC) and to extend into the right atrium of the heart. Of those with Renal cell carcinoma only 4%-25% are found to have IVC invasion and of those only 2%-10% extend into the right atrium. If treated surgically, extension of tumor thrombus is not a determinant of survival; therefore it is imperative to determine the presence and extent of tumor thrombus in order to determine surgical approach and tumor resection. To date this has been primarily accomplished by magnetic resonance imaging and computed tomography. We present a case of 61 years old African American woman in which transthoracic echocardiography provided a more accurate determination/characterization of the presence and degree of tumor thrombus and extension.展开更多
基金supported by the grants from the National Natural Science Foundation of China(No.30971245 and No.81000112)
文摘Pathological cardiac hypertrophy induced by angiotensin Ⅱ (Ang Ⅱ ) can subsequently give rise to heart failure, a leading cause of mortality. Nardosinone is a pharmacologically active compound extracted from the roots ofNardostachys chinensis, a well-known traditional Chinese medicine. In order to investigate the effects of nardosinone on Ang Ⅱ-induced cardiac cell hypertrophy and the related mechanisms, the myoblast cell line H9c2, derived from embryonic rat heart, was treated with nardosi- none (25, 50, 100, and 200μmol/L) or Ang Ⅱ (1 μmol/L). Then cell surface area and mRNA expression of classical markers of hypertrophy were detected. The related protein levels in PI3K/Akt/mTOR and MEK/ERK signaling pathways were examined by Western blotting. It was found that pretreatment with nardosinone could significantly inhibit the enlargement of cell surface area induced by Ang Ⅱ. The mRNA expression of ANP, BNP and 13-MHC was obviously elevated in Ang Ⅱ-treated H9c2 cells, which could be effectively blocked by nardosinone at the concentration of 100μmol/L. Further study revealed that the protective effects of nardosinone might be mediated by repressing the phosphorylation of related proteins in PI3K/Akt and MEK/ERK signaling pathways. It was suggested that the inhibitory effect of nardosinone on Ang Ⅱ-induced hypertrophy in H9c2 cells might be mediated by targeting PI3K/Akt and MEK/ERK signaling pathways.
基金National Natural Science Foundation of China(82030124)National Natural Science Foundation of China(82174015)Science and Technology Innovation Project of China Academy of Traditional Chinese Medicine(CI2021A04609)。
文摘OBJECTIVE To investigate the regulatory effects of icariin(ICA)on cardiac micro⁃vascular endothelial cells(CMEC)after oxygenglucose deprivation reperfusion(OGD/R)injury.METHODS CMEC were subjected to OGD/R treatment to construct a myocardial ischemiareperfusion model,and were divided into normal,model,low(10μmol·L^(-1)),medium(20μmol·L^(-1))and high(40μmol·L^(-1))ICA group,and high ICA+inhibitor group(40μmol·L^(-1)+20 nmol·L^(-1)).CCK-8 assay was used to assess the protective ability of ICA against CMEC,and cell migration assay and tube-formation assay were used to detect the migration and generation ability of CMEC.The TCMSP database,Swiss-Target database and literature mining methods were used to col⁃lect ICA-related targets,the GeneCards data⁃base was used to collect target genes related to myocardial ischemia/reperfusion,and Cytoscape 3.8.0 software was used to construct a"drug-tar⁃get-disease"network.The potential targets were imported into STRING 11.5 database to obtain the PPI network.GO and KEGG enrichment analyses were performed on the potential targets using the DAVID database.Molecular docking was performed using AutoDock-vina 1.1.2 soft⁃ware.Western blot detected the expression of related proteins.RESULTS After CMEC was subjected to OGD/R treatment,ICA had a protec⁃tive effect at 10^(-1)60μmol·L^(-1);the results of the cell migration assay showed that each group of ICA could promote the migratory effect of CMEC(P<0.01,P<0.01);and the results of tube-for⁃mation assay showed that each group of ICA could significantly promote the generation of branches(P<0.01)and the capillary length exten⁃sion(P<0.05).Network pharmacology collected a total of 23 ICA action targets,1500 disease tar⁃gets and 12 key targets.GO function enrichment analysis found 85 results.KEGG pathway enrich⁃ment analysis found 53 results,involving AGERAGE signaling pathway,sphingolipid signaling pathway and VEGF signaling pathway.Molecu⁃lar docking results showed that ICA had better binding with core targets PRKCB,PRKCA and PTGS2.Western blot results showed that ICA could regulate the expression of PRKCB,PRKCA and PTGS2 proteins.The results of cell migra⁃tion assay,tube-formation assay and protein expression were reversed after addition of PKC inhibitor.CONCLUSION The potential mecha⁃nism of action of ICA against myocardial isch⁃emia-reperfusion injury may be related to the reg⁃ulation of processes such as CMEC migration and angiogenesis,and it functions through the key target gene PKC.
基金Rio de Janeiro State Research Foundation,No.252042,No.250671 and No.241703.
文摘Cardiovascular diseases represent the world’s leading cause of death. In thisheterogeneous group of diseases, ischemic cardiomyopathies are the mostdevastating and prevalent, estimated to cause 17.9 million deaths per year.Despite all biomedical efforts, there are no effective treatments that can replacethe myocytes lost during an ischemic event or progression of the disease to heartfailure. In this context, cell therapy is an emerging therapeutic alternative to treatcardiovascular diseases by cell administration, aimed at cardiac regeneration andrepair. In this review, we will cover more than 30 years of cell therapy in cardiology,presenting the main milestones and drawbacks in the field and signalingfuture challenges and perspectives. The outcomes of cardiac cell therapies arediscussed in three distinct aspects: The search for remuscularization byreplacement of lost cells by exogenous adult cells, the endogenous stem cell era,which pursued the isolation of a progenitor with the ability to induce heart repair,and the utilization of pluripotent stem cells as a rich and reliable source ofcardiomyocytes. Acellular therapies using cell derivatives, such as microvesiclesand exosomes, are presented as a promising cell-free therapeutic alternative.
基金supported by Shanghai Municipal Health Bureau Youth Subject(NO.20134y116)
文摘Objective:To investigate the protective effect of glucagon-like peptid-1(GLP-l) against cardiac microvascular endothelial cell(GTFCs) injured by high glucose.Methods:CMECs were isolated and cultured.Superoxide assay kit and dihydroethidine(DHE) staining were used to assess oxidative stress.TENEL staining and caspase 3 expression were used to assess the apoptosis of CMECs.H89 was used to inhibit eAMP/PKA pathway:fasudil was used to inhibit Rho/ROCK pathway.The protein expressions of Rho.ROCK uere examined by Western blol analysis.lesults:High glucose increased the production of ROS.the activity of NADPH.the apoptosis rate and the expression level of Rho/ROCK in CMECs.while GLP- 1 decreased high glucose-induced ROS production.the NADPH activity and the apoptosis rate and the expression level of Rho/ROCK in CMECs,the difference were statistically significant(P<0.05).Conclusions:GLP-1 could protect the cardiac microvessels against oxidative stress and apoptosis.The protective effects of GLP-1 are dependent on downstream inhibition of Rho through a cAMP/PKA-dependent manner,resulting in a subsequent decrease in the expression of NADPH oxidase.
基金supported by the Brainstorm Project of Guizhou Science and Technology Office (Grant No.SY 20133016)Guiyang Science and Technology Planning Project (Grand No.20151001)
文摘Objective: To study the effect and mechanism of the dysfunction of CD4+ T cells in the disease process of chronic cardiac failure (CHF).Methods:According to different group technologies, 100 CHF patients were divided into the following groups: ischemia group and non-ischemia group, heart function Ⅰ-Ⅱ group and heart function Ⅲ-Ⅳ group, event group and non-event group, and 50 healthy volunteers were included in the control group. Realtime PCR was used to detect transcription factors T-bet and GATA-3 of Th1 and Th2; flow cytometry was applied to determine the ratio of Th17 and Treg cells; ELISA was employed to test cytokines IFN-γ, IL-4, IL-17 and IL-10 of peripheral blood Th1, Th2, Th17 and Treg cells, respectively; ultrasonic cardiogram was used to exploit to LVEF and LVEDd; and electrochemilu minescene immunoassay was used to examine plasma BNP. The differences of all indexes of all groups were analyzed and the correlation between CD4 T cells and clinical indexes was analyzed by Pearson correlation analysis. Results: As compared to the control group, the transcription factors T-bet and GATA-3 of Th1 and Th2, the ratio of cytokines Th17 and IFN-γ, cytokines IL-17, T-bet/GATA-3, IFN-γ/IL-4, Th17 cells/Treg cells, IL-17/IL-10 of the ischemia group and non-ischemia group, heart functionⅠ-Ⅱgroup and heart function Ⅲ-Ⅳ group, event group and non-event group were all increased significantly, while their transcription factor GATA-3 of Th2, cytokines IL4, Treg cells ratio, cytokines IL10 were decreased obviously. The differences showed statistical significance (P < 0.05). The increase or decrease of the partial CD4+ T cells of the ischemia group, heart function Ⅲ-Ⅳ group and event group was more distinctly. The results of Pearson correlation analysis showed that IFN-γ and IL-17 were significantly positively correlated with LVEDd and BNP, IL-4 and IL-10 were also significantly positively correlated with LVEF, but correlated negatively with BNP, and IL-17 was negatively correlative with LVEF. Conclusions: There was a correlation between CHF and the dysfunction of CD4+ T cells showing immune activation phenomenons of deviations from the Th1/Th2 balance towards Th1 and from the Th17/Treg balance towards Th17, which was also related to the types, severity and prognosis of the disease.
文摘Over the last years, stem cell therapy has emerged asan inspiring alternative to restore cardiac function after myocardial infarction. A large body of evidence has been obtained in this field but there is no conclusive data on the efficacy of these treatments. Preclinical studies and early reports in humans have been encouraging and have fostered a rapid clinical translation, but positive results have not been uniformly observed and when present, they have been modest. Several types of stem cells, manufacturing methods and delivery routes have been tested in different clinical settings but direct comparison between them is challenging and hinders further research. Despite enormous achievements, major barriers have been found and many fundamental issues remain to be resolved. A better knowledge of the molecular mechanisms implicated in cardiac development and myocardial regeneration is critically needed to overcome some of these hurdles. Genetic and pharmacological priming together with the discovery of new sources of cells have led to a "second generation" of cell products that holds an encouraging promise in cardiovascular regenerative medicine. In this report, we review recent advances in this field focusing on the new types of stem cells that are currently being tested in human beings and on the novel strategies employed to boost cell performance in order to improve cardiac function and outcomes after myocardial infarction.
文摘The emergence of cardiac stem cell therapy can be traced to late 2001, when studies in small animal models of myocardial infarction suggested that stem cells could engraft, proliferate, and regenerate myo-cardium. Subsequent animal laboratory studies showed improved cardiac function, perfusion and survival compared to controls (Figure 1). Within two years, the first clinical trials of stem cell therapy began to appear, and we now have several trials of intracoronary infusion of bone marrow cells with more than one year follow-up. Although this clinical therapy has proven to be safe, the magnitude of improvement in objective measures like ejection fraction has been modest, and the therapy has not entered clinical practice. In the absence of a large prospective randomized trial, the field has moved back to the laboratory. This manuscript aims to provide clinicians with a broad overview of this complex field by briefly reviewing the existing status of clinical myocardial regeneration therapy, then describing selected examples from the laboratory research approaches that may provide a platform for new and potentially increasingly effective clinical strategies.
基金the National Natural Science Foundation of China,No.30801081, 30870691,30700303the New Teacher Foundation of Doctor Center of Ministry of Education of China,No. 200805581179
文摘BACKGROUND: Numerous studies have shown that magnetic resonance imaging (MRI) can detect survival and migration of super paramagnetic iron oxide-labeled stem cells in models of focal cerebral infarction. OBJECTIVE: To observe distribution of bone marrow mesenchymal stem cells (BMSCs) in a rat model of global brain ischemia following cardiac arrest and resuscitation, and to investigate the feasibility of tracing iron oxide-labeled BMSCs using non-invasive MRI. DESIGN, TIME AND SETTING: The randomized, controlled, molecular imaging study was performed at the Linbaixin Medical Research Center, Second Affiliated Hospital, Sun Yat-sen University, and the Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, China from October 2006 to February 2009. MATERIALS: A total of 40 clean, Sprague Dawley rats, aged 6 weeks and of either gender, were supplied by the Experimental Animal Center, Sun Yat-sen University, China, for isolation of BMSCs. Feridex (iron oxide), Gyroscan Inetra 1.5T MRI system, and cardiopulmonary resuscitation device were used in this study. METHODS: A total of 30 healthy, male Sprague Dawiey rats, aged 6 months, were used to induce ventricular fibrillation using alternating current. After 8 minutes, the rats underwent 6-minute chest compression and mechanical ventilation, followed by electric defibrillation, to establish rat models of global brain ischemia due to cardiac arrest and resuscitation. A total of 24 successful models were randomly assigned to Feridex-labeled and non-labeled groups (n = 12 for each group). At 2 hours after resuscitation, 5 ×10^8 Feridex-labeled BMSCs, with protamine sulfate as a carrier, and 5 ×10^6 non-labeled BMSCs were respectively transplanted into both groups of rats through the right carotid artery (cells were harvested in 1 mL phosphate buffered saline). MAIN OUTCOME MEASURES: Feridex-labeled BMSCs were observed by Prussian blue staining and electron microscopy. Signal intensity, celluar viability, and proliferative capacity of BMSCs were measured using MRI, Trypan blue test, and M-IT assay, respectively. Distribution of transplanted cells was observed in rats utilizing MRI and Prussian blue staining prior to and 1, 3, 7, and 14 days after transplantation. RESULTS: Prussian blue staining displayed many blue granules in the Feridex-labeled BMSCs. High density of iron granules was observed in the cytoplasm under electron microscopy. According to MRI results, and compared with the non-labeled group, the signal intensity was decreased in the Feridex-labeled group (P 〈 0.05). The decrease was most significant in the 50 pg/mL Feridex-labeled group (P 〈 0.01). There were no significant differences in celluar viability and proliferation of BMSCs between the Feridex-labeled and non-labeled groups after 1 week (P 〉 0.05). Low-signal lesions were detected in the rat hippocampus and temporal cortex at 3 days after transplantation. The low-signal lesions were still detectable at 14 days, and positively stained cells were observed in the hippocampus and temporal cortex using Prussian blue staining. There were no significant differences in signal intensity in the non-labeled group. CONCLUSION: BMSC transplantation traversed the blood-brain barrier and distributed into vulnerable zones in a rat model of cardiac arrest-induced global brain ischemia. MRI provided a non-invasive method to in vivo dynamically and spatially trace Feridex-labeled BMSCs after transplantation.
基金This work was supported by National Natural Science Foundation of China (30371063) Natural Science Foundation of Hebei Province, China (302432).
文摘The purpose of this research was to study the effect of hypoxia on the Ca^2+ concentration in broiler's cardiac muscle cells (CMCs). The concentration of Ca^2+ in the CMC was observed using a laser scanning confocal microscope (LSCM). The results showed that hypoxia could significantly increase intracellular Ca^2+(normal oxygen, 99.3 +_ 13.1; hypoxia, 129.4 +_ 24.3, P 〈 0.01) in CMCs. The Ca^2+ antagonist (nifedipine, verapamil) could significantly restrain the Ca^2+ influx across the cell membrane of CMC treated by hypoxia (CMC: hypoxia + verapamil, 100.9± 28.2; hypoxia + nifedipine, 107.6± 27.7; P 〈 0.01). The results showed hypoxia could increase intracellular Ca^2+ concentration of CMC, and the Ca^2+ antagonist could restrain the Ca^2+ influx across the cell membrane of CMC treated by hypoxia.
基金Science and Technology Development Fund,No.28932Cardiovascular Research,Education,Prevention Foundation,CVREP-Dr.Wael Al Mahmeed Grant.
文摘Regenerative medicine is the field concerned with the repair and restoration of the integrity of damaged human tissues as well as whole organs.Since the inception of the field several decades ago,regenerative medicine therapies,namely stem cells,have received significant attention in preclinical studies and clinical trials.Apart from their known potential for differentiation into the various body cells,stem cells enhance the organ's intrinsic regenerative capacity by altering its environment,whether by exogenous injection or introducing their products that modulate endogenous stem cell function and fate for the sake of regeneration.Recently,research in cardiology has highlighted the evidence for the existence of cardiac stem and progenitor cells(CSCs/CPCs).The global burden of cardiovascular diseases’morbidity and mortality has demanded an in-depth understanding of the biology of CSCs/CPCs aiming at improving the outcome for an innovative therapeutic strategy.This review will discuss the nature of each of the CSCs/CPCs,their environment,their interplay with other cells,and their metabolism.In addition,important issues are tackled concerning the potency of CSCs/CPCs in relation to their secretome for mediating the ability to influence other cells.Moreover,the review will throw the light on the clinical trials and the preclinical studies using CSCs/CPCs and combined therapy for cardiac regeneration.Finally,the novel role of nanotechnology in cardiac regeneration will be explored.
文摘In this study we tried to investigate the effect of fructose-1,6-diphosphate and HTK solution on protecting primary cardiac muscle cells of rat with cold preservation. The primary cardiac muscle cells of rat were cultured in vitro with four preservation solutions respectively: 0.9 % sodium chloride solution (group A), FDP (group B), HTK solution (group C) and a mixture of FDP and HTK solution (group D). The cells were preserved for 6, 8 and 10 h at 0-4 ℃. The values of AST and LDH-L and the Na+-K+ ATPase activity in cardiac muscle cells were detected, and the survival rate of cardiac muscle cells was detected with trypan blue staining. The values of AST and LDH-L in group C and group D were remarkable lower those in group A and group B (P<0.001), while the Na+-K+ ATPase activity and the survival rate of cells in group C and group D were much higher than those in group A and group B (P<0.001). The values of AST and LDH-L after 6 hours in group D decreased much more than those in group C (P<0.01), while the Na+-K+ ATPase activity and the survival rate of cells in group D improved more than those in group C (P<0.01). Both of the HTK solution and the mixture of HTK and FDP solution have an evident effect on protecting the primary cardiac muscle cells of rat in vitro with cold preservation, Compared with the HTK solution, the mixture solution has a better short-term protective effect.
文摘Causative mutations and variants associated with cardiac diseases have been found in genes encoding cardiac ion channels, accessory proteins, cytoskeletal components, junctional proteins, and signaling molecules. In most cases the functional evaluation of the genetic alterationhas been carried out by expressing the mutated proteins in in-vitro heterologous systems. While these studies have provided a wealth of functional details that have greatly enhanced the understanding of the pathological mechanisms, it has always been clear that heterologous expression of the mutant protein bears the intrinsic limitation of the lack of a proper intracellular environment and the lack of pathological remodeling. The results obtained from the application of the next generation sequencing technique to patients suffering from cardiac diseases have identified several loci, mostly in non-coding DNA regions, which still await functional analysis. The isolation and culture of human embryonic stem cells has initially provided a constant source of cells from which cardiomyocytes(CMs) can be obtained by differentiation. Furthermore, the possibility to reprogram cellular fate to a pluripotent state, has opened this process to the study of genetic diseases. Thus induced pluripotent stem cells(i PSCs) represent a completely new cellular model that overcomes the limitations of heterologous studies. Importantly, due to the possibility to keep spontaneously beating CMs in culture for several months, during which they show a certain degree of maturation/aging, this approach will also provide a system in which to address the effect of long-term expression of the mutated proteins or any other DNA mutation, in terms of electrophysiological remodeling. Moreover, since i PSC preserve the entire patients' genetic context, the system will help the physicians in identifying the most appropriate pharmacological intervention to correct the functional alteration. This article summarizes the current knowledge of cardiac genetic diseases modelled with i PSC.
基金Supported by Department of Biotechnology,Government of India,BT/PR6519/MED/14/826/2005,to Dr.Nityanand S
文摘AIM:To study the expression of embryonal markers by fetal cardiac mesenchymal stem cells(fC-MSC)and their differentiation into cells of all the germ layers. METHODS:Ten independent cultures of rat fCMSC were set up from cells derived from individual or pooled fetal hearts and studies given below were carried out at passages 3,6,15 and 21.The phenotypic markers CD29,CD31,CD34,CD45,CD73,CD90, CD105,CD166 and HLA-DR were analyzed by flow cytometry.The expression of embryonal markers Oct-4, Nanog,Sox-2,SSEA-1,SSEA-3,SSEA-4,TRA-1-60 and TRA 1-81 were studied by immunocytochemistry.The fC-MSC treated with specific induction medium were evaluated for their differentiation into(1)adipocytes and osteocytes(mesodermal cells)by Oil Red O and Alizarin Red staining,respectively,as well as by expression of lipoprotein lipase,PPARγ2 genes in adipocytes and osteopontin and RUNX2 genes in osteocytes by reverse-transcription polymerase chain reaction(RT- PCR);(2)neuronal(ectodermal)cells by expression of neuronal Filament-160 and Glial Fibrillar Acidic Protein by RT-PCR and immunocytochemistry;and(3)hepa- tocytic(endodermal)cells by expression of albumin by RT-PCR and immunocytochemistry,glycogen deposits by Periodic Acid Schiff staining and excretion of urea into the culture supernatant. RESULTS:The fC-MSC expressed CD29,CD73,CD90, CD105,CD166 but lacked expression of CD31,CD34, CD45 and HLA-DR.They expressed embryonal markers,viz.Oct-4,Nanog,Sox-2,SSEA-1,SSEA-3,SSEA-4, TRA-1-81 but not TRA-1-60.On treatment with specific induction media,they differentiated into adipocytes and osteocytes,neuronal cells and hepatocytic cells. CONCLUSION:Our results together suggest that fCMSC are primitive stem cell types with a high degree of plasticity and,in addition to their suitability for cardiovascular regenerative therapy,they may have a wide spectrum of therapeutic applications in regenerative medicine.
文摘BACKGROUND Secondary cardiac involvement by lymphoma has received limited attention in the medical literature, despite its grave prognosis. Although chemotherapy improves patients' survival, a subgroup of treated patients dies suddenly due to myocardial rupture following chemotherapy initiation. Reducing the initial chemotherapy dose with dose escalation to standard doses may be effective in minimizing this risk but the data are limited. We report on the successful management of a patient with disseminated diffuse large B-cell lymphoma(DLBCL) involving the heart using such approach.CASE SUMMARY An 18-year-old male presented to our hospital with six months history of progressive dyspnea, orthopnea and cough. On physical examination, the patient was found to have a plethoric and mildly edematous face, fixed elevation of the right internal jugular vein, suggestive of superior vena cava obstruction, and a pelvic mass. Investigations during admission including a thoracoabdominal computed tomography(CT) scan with CT guided biopsy of the pelvic mass,echocardiography and cardiac magnetic resonance imaging led to the diagnosis of disseminated DLBCL with cardiac involvement. The patients were successfully treated with chemotherapy dose reduction followed by dose escalation to standard doses, under the guidance of cardiac imaging. The patient completed chemotherapy and underwent a successful bone marrow transplant. He is currently in remission and has a normal left ventricular function.CONCLUSION Imaging-guided chemotherapy dosing may minimize the risk of myocardial rupture in cardiac lymphoma. Data are limited. Management should be individualized.
文摘Objectives To investigate the anti-apoptotic effects of mesenchymal stem cells (MSCs) on hypoxic injured cardiac myocytes in vitro. Methods MSCs were isolated from bone marrow of Sprague-Dawley (SD) rats, and cardiac myocytes from neonatal rats. The rat cardiac myocytes were co-cultured with MSCs or MSC-conditioned media in anoxia (95% N2 ±5% CO2) for 72 hours. Cell apoptosis was measured by Hoechst 33258 staining. The expression of Bcl-2 and Bax in cardiac myocytes was tested by Western Blot. Results The apoptotic rate was 51.6% ± 2.4% when cardiac myocytes were cultured in continuous hypoxia and was significantly decreased when cardiac myocytes were cocultured with MSCs or MSC-conditioned media ( 15.1% ± 5.4% and 24. 0% ± 4.2% respectively, P 〈 0. 001 ). The decreased expression of Bax in the cardiac myocytes was greatly related to the decreasing of apoptosis, but there was no difference in Bcl-2 expression among these groups. Conclusions Co-cultured MSCs showed significant anti-apoptotic effects on cardiac myocytes in continuous hypoxia. The mechanism may be the interact of cell to cell and paracrine of cytokines which effected the expression of Bax in the cardiac myocytes.
文摘Despite optimal interventional and medical therapy, ischemic heart disease is still an important cause of morbidity and mortality worldwide. Although not included in standard of care rehabilitation, stem cell therapy(SCT) could be a solution for prompting cardiac regeneration. Multiple studies have been published from the beginning of SCT until now, but overall no unanimous conclusion could be drawn in part due to the lack of appropriate endpoints. In order to appreciate the impact of SCT, multiple markers from different categories should be considered: Structural, biological, functional, physiological, but also major adverse cardiac events or quality of life. Imaging end-points are among the most used-especially left ventricle ejection fraction(LVEF) measured through different methods. Other imaging parameters are infarct size, myocardial viability and perfusion. The impact of SCT on all of the aforementioned end-points is controversial and debatable. 2 D-echocardiography is widely exploited, but new approaches such as tissue Doppler, strain/strain rate or 3 D-echocardiography are more accurate, especially since the latter one is comparable with the MRI gold standard estimation of LVEF. Apart from the objective parameters, there are also patient-centered evaluations to reveal the benefits of SCT, such as quality of life and performance status, the most valuable from the patient point of view. Emerging parameters investigating molecular pathways such as non-coding RNAs or inflammation cytokines have a high potential as prognostic factors. Due to the disadvantages of current techniques, new imaging methods with labelled cells tracked along their lifetime seem promising, but until now only pre-clinical trials have been conducted in humans. Overall, SCT is characterized by high heterogeneity not only in preparation, administration and type of cells, but also in quantification of therapy effects.
文摘Renal cell carcinoma is a common urological malignancy with the unique ability to invade the inferior vena cava(IVC) and to extend into the right atrium of the heart. Of those with Renal cell carcinoma only 4%-25% are found to have IVC invasion and of those only 2%-10% extend into the right atrium. If treated surgically, extension of tumor thrombus is not a determinant of survival; therefore it is imperative to determine the presence and extent of tumor thrombus in order to determine surgical approach and tumor resection. To date this has been primarily accomplished by magnetic resonance imaging and computed tomography. We present a case of 61 years old African American woman in which transthoracic echocardiography provided a more accurate determination/characterization of the presence and degree of tumor thrombus and extension.