Conventional carpet cloak structures have been utilized to conceal the objects located on a planar perfect electric conductor surface. We systematically investigate hiding arbitrarily shaped objects on a rough surface...Conventional carpet cloak structures have been utilized to conceal the objects located on a planar perfect electric conductor surface. We systematically investigate hiding arbitrarily shaped objects on a rough surface, as a more general and practical scenario. In addition, the required cloak is designed considering different boundary conditions for the surface beneath the object, despite the previous studies. To achieve an invisibility cloak, taking advantage of linear coordinate transformation, a simple homogeneous material is obtained to realize the cloak structure, facilitating the fabrication processes. Numerical simulations validate the performance of the proposed cloaking method. Therefore, the proposed structure is capable of cloaking in more general and complicated scenarios.展开更多
We present a method for designing an open acoustic cloak that can conceal a perturbation on Hat ground aria simultaneously meet the requirement of communication and matter interchange between the inside and the outsid...We present a method for designing an open acoustic cloak that can conceal a perturbation on Hat ground aria simultaneously meet the requirement of communication and matter interchange between the inside and the outside of the cloak. This cloak can be constructed with a multilayered structure and each layer is an isotropic and homogeneous medium. The design scheme consists of two steps: firstly, we apply a conformal coordinate transformation to obtain a quasi-perfect cloak with heterogeneous isotropic material; then, according to the profile of the material distribution, we degenerate this cloak into a multilayered-homogeneous isotropic cloak, which has two open windows with negligible disturbance on its invisibility performance. This may greatly facilitate the fabrication and enhance the applicability of such a carpet-type cloak.展开更多
文摘Conventional carpet cloak structures have been utilized to conceal the objects located on a planar perfect electric conductor surface. We systematically investigate hiding arbitrarily shaped objects on a rough surface, as a more general and practical scenario. In addition, the required cloak is designed considering different boundary conditions for the surface beneath the object, despite the previous studies. To achieve an invisibility cloak, taking advantage of linear coordinate transformation, a simple homogeneous material is obtained to realize the cloak structure, facilitating the fabrication processes. Numerical simulations validate the performance of the proposed cloaking method. Therefore, the proposed structure is capable of cloaking in more general and complicated scenarios.
文摘We present a method for designing an open acoustic cloak that can conceal a perturbation on Hat ground aria simultaneously meet the requirement of communication and matter interchange between the inside and the outside of the cloak. This cloak can be constructed with a multilayered structure and each layer is an isotropic and homogeneous medium. The design scheme consists of two steps: firstly, we apply a conformal coordinate transformation to obtain a quasi-perfect cloak with heterogeneous isotropic material; then, according to the profile of the material distribution, we degenerate this cloak into a multilayered-homogeneous isotropic cloak, which has two open windows with negligible disturbance on its invisibility performance. This may greatly facilitate the fabrication and enhance the applicability of such a carpet-type cloak.