This study proposed a strategy for effectively diminishing the carrier concentration in Cu_(2)Te by introducing graphene sheets,Based on thermoelectric property measurements and single parabolic band modeling,the inco...This study proposed a strategy for effectively diminishing the carrier concentration in Cu_(2)Te by introducing graphene sheets,Based on thermoelectric property measurements and single parabolic band modeling,the incorporated graphene effectively reduced the carrier concentration,not only enhancing the thermoelectric performance of the Cu_(2)Te/graphene composite but also substantially improving its figure of merit up to ~1.47 at 1000 K,which is 268% higher than that of pristine Cu_(2)Te,This study gives an insight into the control of carrier concentration and thermoelectric properties in Cu_(2)Te,and it could be extended to other copper chalcogenides for excellent thermoelectrics.展开更多
The charge carrier concentration profile is a critical factor that determines semiconducting material properties and device performance.Dielectric force microscopy(DFM)has been previously developed to map charge carri...The charge carrier concentration profile is a critical factor that determines semiconducting material properties and device performance.Dielectric force microscopy(DFM)has been previously developed to map charge carrier concentrations with nanometer-scale spatial resolution.However,it is challenging to quantitatively obtain the charge carrier concentration,since the dielectric force is also affected by the mobility.Here,we quantitative measured the charge carrier concentration at the saturation mobility regime via the rectification effect-dependent gating ratio of DFM.By measuring a series of n-type GaAs and GaN thin films with mobility in the saturation regime,we confirmed the decreased DFM-measured gating ratio with increasing electron concentration.Combined with numerical simulation to calibrate the tip–sample geometry-induced systematic error,the quantitative correlation between the DFM-measured gating ratio and the electron concentration has been established,where the extracted electron concentration presents high accuracy in the range of 4×10^(16)–1×10^(18)cm^(-3).We expect the quantitative DFM to find broad applications in characterizing the charge carrier transport properties of various semiconducting materials and devices.展开更多
All-solid-state fluoride ion batteries(FIBs)have been recently considered as a post-lithium-ion battery system due to their high safety and high energy density.Just like all solid-state lithium batteries,the key to th...All-solid-state fluoride ion batteries(FIBs)have been recently considered as a post-lithium-ion battery system due to their high safety and high energy density.Just like all solid-state lithium batteries,the key to the development of FIBs lies in room-temperature electrolytes with high ionic conductivity.β-KSbF_(4) is a kind of promising solid-state electrolyte for FIBs owing to its rational ionic conductivity and relatively wide electrochemical stability window at room temperature.However,the previous synthesis routes ofβ-KSbF_(4) required the use of highly toxic hydrofluoric acid and the ionic conductivity of as-prepared product needs to be further improved.Herein,the β-KSbF_(4) sample with an ionic conductivity of 1.04×10^(-4)s cm^(-1)(30°C)is synthesized through the simple solid-state route.In order to account for the high ionic conductivity of the as-synthesizedβ-KSbF_(4),X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive X-ray spectroscopy(EDS)are used to characterize the physic-ochemical properties.The results show that the as-synthesizedβ-KSbF_(4) exhibits higher carrier concentra-tion of 1.0×10^(-6)S cm-Hz^(-1)K and hopping frequency of 1.31×10^(6)Hz at 30°C due to the formation of the fluorine vacancies.Meanwhile,the hopping frequency shows the same trend as the changes of ionic conductivity with the changes of temperature,while the carrier concentration is found to be almost con-stant.The two different trends indicate the hopping frequency is mainly responsible for the ionic conduc-tion behavior withinβ-KSbF_(4).Furthermore,the all-solid-state FIBs,in which Ag and Pb+PbF_(2) are adopted as cathode and anode,andβ-KSbF_(4) as fluoride ion conductor,are capable of reversible charge and discharge.The assembled FIBs show a discharge capacity of 108.4 mA h g^(-1) at 1st cycle and 74.2 mA h g^(-1) at 50th cycle.Based on an examination of the capacity decay mechanism,it has been found that deterioration of the electrolyte/electrode interface is an important reason for hindering the commer-cial application of FIBs.Hence,the in-depth comprehension of the ion transport characteristics inβ-KSbF_(4) and the interpretation of the capacity fading mechanism will be conducive to promoting development of high-performanceFIBs.展开更多
Intrinsic carrier concentration(ni) is one of the most important physical parameters for understanding the physics of strained Si and Si1-xGex materials as well as for evaluating the electrical properties of Si-based ...Intrinsic carrier concentration(ni) is one of the most important physical parameters for understanding the physics of strained Si and Si1-xGex materials as well as for evaluating the electrical properties of Si-based strained devices. Up to now, the report on quantitative results of intrinsic carrier concentration in strained Si and Si1-xGex materials has been still lacking. In this paper, by analyzing the band structure of strained Si and Si1-xGex materials, both the effective densities of the state near the top of valence band and the bottom of conduction band( Nc and Nv) at 218, 330 and 393 K and the intrinsic carrier concentration related to Ge fraction(x) at 300 K were systematically studied within the framework of KP theory and semiconductor physics. It is found that the intrinsic carrier concentration in strained Si(001) and Si1-xGex(001) and(101) materials at 300 K increases significantly with increasing Ge fraction(x), which provides valuable references to understand the Sibased strained device physics and design.展开更多
Mg_(3)Sb_(2)has attracted intensive attention as a typical Zintl-type thermoelectric material.Despite the exceptional thermoelectric performance in n-type Mg_(3)Sb_(2),the dimensionless figure of merit(zT)of p-type Mg...Mg_(3)Sb_(2)has attracted intensive attention as a typical Zintl-type thermoelectric material.Despite the exceptional thermoelectric performance in n-type Mg_(3)Sb_(2),the dimensionless figure of merit(zT)of p-type Mg_(3)Sb_(2)remains lower than 1,which is mainly attributed to its inferior electrical properties.Herein,we synergistically optimize the thermoelectric properties of p-type Mg_(3)Sb_(2)materials via codoping of Cd and Ag,which were synthesized by high-energy ball milling combined with hot pressing.It is found that Cd doping not only increases the carrier mobility of p-type Mg_(3)Sb_(2),but also diminishes its thermal conductivity(κ_(tot)),with Mg_(2.85)Cd_(0.5)Sb_(2)achieving a lowκtot value of∼0.67 W m^(−1)K^(−1)at room temperature.Further Ag doping elevates the carrier concentration,so that the power factor is optimized over the entire temperature range.Eventually,a peak zT of∼0.75 at 773 K and an excellent average zT of∼0.41 over 300−773 K are obtained in Mg_(2.82)Ag_(0.03)Cd_(0.5)Sb_(2),which are∼240%and∼490%higher than those of pristine Mg_(3.4)Sb_(2),respectively.This study provides an effective pathway to synergistically improve the thermoelectric performance of p-type Mg_(3)Sb_(2)by codoping Cd and Ag,which is beneficial to the future applications of Mg_(3)Sb_(2)-based thermoelectric materials.展开更多
AgCrSe2-based compounds have attracted much attention as an environmentally friendly thermoelectric material in recent years due to the intriguing liquid-like properties.However,the ultra-low carrier concentration and...AgCrSe2-based compounds have attracted much attention as an environmentally friendly thermoelectric material in recent years due to the intriguing liquid-like properties.However,the ultra-low carrier concentration and the high Ag_(Cr)deep-level defects limit the overall thermoelectric performance.Here,we successfully introduced Pb into Ag-deficient Ag_(0.97)CrSe_(2) alloys to tune the carrier concentration across a broad temperature range.The Pb^(2+) as an acceptor dopant preferentially occupies Cr sites,boosting the hole carrier concentration to 1.77×10^(19) cm^(-3) at room temperature.Furthermore,the Pb strongly inhibits the creation of intrinsic Ag_(Cr) defects,weakens the increased thermal excited ionization with the increasing temperature and slowed the rising trend of the carrier concentration.The designed carrier concentration matches the theoretically predicted optimized one over the entire temperature range,leading to a remarkable enhancement in power factor,especially the maximum power factor of ~500 μW·m^(-1)·K^(-2) at 750 K is superior to most previous results.Additionally,the abundant point defects promote phonon scattering,thus reducing the lattice thermal conductivity.As a result,the maximum figure of merit zT(~0.51 at 750 K) is achieved in Ag_(0.97)Cr_(0.995)Pb_(0.005)Se_(2).This work confirms the feasibility of manipulating deep-level defects to achieve temperature-dependent optimal carrier concentration and provides a valuable guidance for other thermoelectric materials.展开更多
Indium selenide(InSe),as a wide-bandgap semiconductor,has received extensive attention in the flexible electronics field in recent years due to its exceptional plasticity and promising thermoelectric performance.Howev...Indium selenide(InSe),as a wide-bandgap semiconductor,has received extensive attention in the flexible electronics field in recent years due to its exceptional plasticity and promising thermoelectric performance.However,the low carrier concentration severely limits its thermoelectric performance improvement.In this work,we conducted contrasting strategies that can be employed to increase the carrier concentration of InSe,including bandgap narrowing and heterovalent doping.Specifically,the carrier concentration initially increases as a result of the reduced bandgap upon Te alloying and then slightly decreases due to the weak electronegativity of Te.Whereas Br doping realizes high carrier concentration by pushing the Fermi level into the conduction bands and activating the multiple bands.On the other hand,both Te and Br obviously suppress the thermal conductivity due to the point defect scattering.By contrast,Br doping realizes a higher thermoelectric performance with a maximum ZT of~0.13 at 773 K benefiting from the better optimization of carrier concentration.This work elucidates the strategies for enhancing carrier concentration at anion sites and demonstrates the high efficiency of halogen doping in InSe.Moreover,the carrier concentration of InSe is promising to be further optimized,and future work should focus on employing approaches such as cation doping or secondphase compositing.展开更多
Cu_(3)SbSe_(4),a copper-based sulfide free of rare earth elements,has received extensive attention in ther-moelectric materials.However,its low carrier concentration restricts its widespread application.In this study,...Cu_(3)SbSe_(4),a copper-based sulfide free of rare earth elements,has received extensive attention in ther-moelectric materials.However,its low carrier concentration restricts its widespread application.In this study,a microwave-assisted solution synthesis method was used to produce samples of Cu_(3)SbSe_(4),which enabled the formation of CuSe in situ and increased the yield.Through the use of first-principles cal-culations,structural analysis,and performance evaluation,it was found that CuSe can enhance the carrier concentration and that induced nano-defects have a positive effect on reducing the lattice thermal conductivity.Moreover,doping with Sn decreases the band gap of the system and moves the Fermi level into the valence band,increasing the carrier concentration to 1.15×10^(-20)cm^(-3).Finally,the zT value of the Cu_(3)Sb_(0.98)Sn_(0.02)Se_(4)sample was achieved at 1.05 at 623 K when the theoretical yield of a single synthesis was 10 mmol.展开更多
Sensitive and reliable X-ray detectors are essential for medical radiography,industrial inspection and security screening.Lowering the radiation dose allows reduced health risks and increased frequency and fidelity of...Sensitive and reliable X-ray detectors are essential for medical radiography,industrial inspection and security screening.Lowering the radiation dose allows reduced health risks and increased frequency and fidelity of diagnostic technologies for earlier detection of disease and its recurrence.Three-dimensional(3 D)organic-inorganic hybrid lead halide perovskites are promising for direct X-ray detection-they show improved sensitivity compared to conventional X-ray detectors.However,their high and unstable dark current,caused by ion migration and high dark carrier concentration in the 3 D hybrid perovskites,limits their performance and long-term operation stability.Here we report ultrasensitive,stable X-ray detectors made using zero-dimensional(0 D)methylammonium bismuth iodide perovskite(MA3Bi2I9)single crystals.The 0 D crystal structure leads to a high activation energy(Ea)for ion migration(0.46 e V)and is also accompanied by a low dark carrier concentration(~10^6 cm^-3).The X-ray detectors exhibit sensitivity of 10,620μC Gy-1 air cm-2,a limit of detection(Lo D)of 0.62 nG yairs-1,and stable operation even under high applied biases;no deterioration in detection performance was observed following sensing of an integrated X-ray irradiation dose of^23,800 m Gyair,equivalent to>200,000 times the dose required for a single commercial X-ray chest radiograph.Regulating the ion migration channels and decreasing the dark carrier concentration in perovskites provide routes for stable and ultrasensitive X-ray detectors.展开更多
The Zintl compound Mg3Sb2 has been recently identified as promising thermoelectric material owing to its high thermoelectric performance and cost-effective,nontoxicity and environment friendly characteristics.However,...The Zintl compound Mg3Sb2 has been recently identified as promising thermoelectric material owing to its high thermoelectric performance and cost-effective,nontoxicity and environment friendly characteristics.However,the intrinsically p-type Mg3Sb2 shows low figure of merit(z T = 0.23 at 723 K) for its poor electrical conductivity.In this study,a series of Mg(3-x)LixSb2 bulk materials have been prepared by high-energy ball milling and spark plasma sintering(SPS) process.Electrical transport measurements on these materials revealed significant improvement on the power factor with respect to the undoped sample,which can be essentially attributed to the increased carrier concentration,leading to a maximum z T of0.59 at 723 K with the optimum doping level x = 0.01.Additionally,the engineering z T and energy conversion efficiency are calculated to be 0.235 and 4.89%,respectively.To our best knowledge,those are the highest values of all reported p-type Mg3Sb2-based compounds with single element doping.展开更多
Nitrogen-doped, p-type ZnO thin films were grown successfully on sapphire (0001) substrates by using atomic layer epitaxy (ALE). Zn(C2H5)2 [Diethylzinc, DEZn], H2O and NH3 were used as a zinc precursor, an oxidant and...Nitrogen-doped, p-type ZnO thin films were grown successfully on sapphire (0001) substrates by using atomic layer epitaxy (ALE). Zn(C2H5)2 [Diethylzinc, DEZn], H2O and NH3 were used as a zinc precursor, an oxidant and a doping source gas, respectively. The lowest electrical resistivity of the p-type ZnO films grown by ALE and annealed at 1000 ℃ in an oxygen atmosphere for 1 h was 18.3 Ω·cm with a hole concentration of 3.71×1017 cm-3. Low temperature-photoluminescence analysis and time-dependent Hall measurement results support that the nitrogen-doped ZnO after annealing is a p-type semiconductor.展开更多
BaZr1-xScxO3-0.5x (x=0.07,0.10,0.13,0.16) powders were prepared by solid-state reaction method,and ZnO was used as sintering aid.Samples with different amount of ZnO additive were sintered at 1450·C for 6 h in ai...BaZr1-xScxO3-0.5x (x=0.07,0.10,0.13,0.16) powders were prepared by solid-state reaction method,and ZnO was used as sintering aid.Samples with different amount of ZnO additive were sintered at 1450·C for 6 h in air.Single cubic perovskite phase proton conductors were obtained.Conductivity was measured by electrochemical workstation.It was shown that Sc doping could increase conductivity through enhancing the carrier concentration in the material,but excessive Sc content might decrease the carrier concentration because of its charge compensation.ZnO had an influence on carrier concentration and mobility and affected the electrical conductivity.2 mol% ZnO and 13 mol% ScO1.5 doped sample showed the highest DC conductivity of 3.6×10-3 S·cm-1 tested at 800·C in wet hydrogen atmosphere.展开更多
A mathematical model linking thermoelasticity to photothermal experiments is proposed with the consideration of the photothermal effect.The system equations for coupled plasma,heat conduction with phase-lags(PLs),and ...A mathematical model linking thermoelasticity to photothermal experiments is proposed with the consideration of the photothermal effect.The system equations for coupled plasma,heat conduction with phase-lags(PLs),and motion equations are introduced and solved by using the Laplace transform technique.The photothermal,thermal,and elastic waves in a rotating solid cylinder of semiconductor material are analyzed with the proposed model.The cylinder surface is constrained and subjected to a time-dependent pulse heat flux.The sensitivity of the physical fields for the angular velocity,PLs,and thermal vibration parameters is investigated.In addition,the effects of the effective parameters on the physical quantities are graphically illustrated and discussed in detail.展开更多
Highly conductive boron-doped hydrogenated mieroerystalline silicon (μc-Si:H) films are prepared by very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at the substrate temperatures (Ts)...Highly conductive boron-doped hydrogenated mieroerystalline silicon (μc-Si:H) films are prepared by very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at the substrate temperatures (Ts) ranging from 90℃ to 270℃. The effects of Ts on the growth and properties of the films are investigated. Results indicate that the growth rate, the electrical (dark conductivity, carrier concentration and Hall mobility) and structural (crystallinity and grain size) properties are all strongly dependent on Ts. As Ts increases, it is observed that 1) the growth rate initially increases and then arrives at a maximum value of 13.3 nm/min at Ts=210℃, 2) the crystalline volume fraction (Xc) and the grain size increase initially, then reach their maximum values at TS=140℃, and finally decrease, 3) the dark conductivity (σd), carrier concentration and Hall mobility have a similar dependence on Ts and arrive at their maximum values at Ts-190℃. In addition, it is also observed that at a lower substrate temperature Ts, a higher dopant concentration is required in order to obtain a maximum σd.展开更多
An accurate photodiode circuit macro-model is proposed for SPICE simulation. The definition and implementation of the macro-model is based on carrier stationary continuity equation. In this macro-model, the photodiode...An accurate photodiode circuit macro-model is proposed for SPICE simulation. The definition and implementation of the macro-model is based on carrier stationary continuity equation. In this macro-model, the photodiode is a device of three pins, one for light intensity input and the other two for photocurrent output, which represent the relationship between photocurrent and incident light. The validity of the proposed macro-model is demonstrated with its PSPICE simulation result compared with reported experimental data.展开更多
Experimentally the plateaus characteristic for the integer quantum Hall effect is obtained in vicinity of specific values of the magnetic induction. The paper demonstrates that the ratios of these induction values to ...Experimentally the plateaus characteristic for the integer quantum Hall effect is obtained in vicinity of specific values of the magnetic induction. The paper demonstrates that the ratios of these induction values to carrier concentration in the planar crystalline samples approach systematically the quanta of the magnetic flux important for the behavior of superconductors. Moreover, the same quanta can be deduced from the Landau levels theory and their application in the magnetoresistance theory gives results being in accordance with experiments. The quanta of the magnetic flux similar to those for the integer quantum Hall effect can be obtained also for the fractional quantum Hall effect. This holds on condition the experimental ratio of the magnetic flux to carrier concentration is multiplied by the filling factor of the Landau level.展开更多
Thermoelectric materials possess the unique capability to convert thermal energy into electric energy and vice versa,making them promising for waste heat recovery and efficient cooling systems.Currently,extensively in...Thermoelectric materials possess the unique capability to convert thermal energy into electric energy and vice versa,making them promising for waste heat recovery and efficient cooling systems.Currently,extensively investigated thermoelectric materials such as Bi2Te3,PbTe and GeTe exhibit superior thermoelectric properties at room temperature and medium temperature regions.However,the broad application of these thermoelectric materials has been impeded by the high cost and restricted accessibility of Te and Ge in the earth's crust.Over the past few years,researchers have shown increasing interest in PbSe-and PbS-based materials,primarily attributed to their abundant elemental supply and relatively low costs.The assessment of research progress and a comprehensive overview of optimization strategies in time can significantly contribute to further improving the thermoelectric performance.These strategies include optimizing carrier concentration(aliovalent doping,dynamic doping and defect state),enhancing density-of-state effective mass(band convergence,band flattening and energy filtering effect),optimizing carrier mobility(band sharpening and band alignment)and reducing lattice thermal conductivity(all-scale hierarchical defect structures designing).This systematic summary and analysis provide novel insights and perspectives for the development of thermoelectric materials.展开更多
Sandwich-style memristor devices were synthesized by electrochemical deposition with a ZnO film serving as the active layer between Al-doped ZnO (AZO) and Au electrodes. The carrier concentration of the ZnO films is...Sandwich-style memristor devices were synthesized by electrochemical deposition with a ZnO film serving as the active layer between Al-doped ZnO (AZO) and Au electrodes. The carrier concentration of the ZnO films is controlled by adding HNO3 during the growth process. A resulting increase in carrier concentration from 10^17 to 10^19 cm^-3 was observed, along with a corresponding drop in the on--off ratio from 6,437% to 100%. The resistive switching characteristics completely disappeared when the carrier concentration was above 1029 cm-3, making it unsuitable for a memory device. The decreasing switching ratio is attributed to a reduction in the driving force for oxygen vacancy drift. Systematic analysis of the migration of oxygen vacancies is presented, including the concentration gradient and electrical potential gradient. Such oxygen vacancy migration dynamics provide insight into the mechanisms of the oxygen vacancy drift and provide valuable information for industrial production of memristor devices.展开更多
Possessing inherently low thermal conductivity,BiSbSe_(3) is a promising thermoelectric material for medium temperature.Therefore,to substantially optimize the thermoelectric performance of BiSbSe_(3),researchers main...Possessing inherently low thermal conductivity,BiSbSe_(3) is a promising thermoelectric material for medium temperature.Therefore,to substantially optimize the thermoelectric performance of BiSbSe_(3),researchers mainly focus on the strategies to improve its electrical transport properties.Among these strongly coupled thermoelectric parameters,carrier concentration and effective mass are two intrinsic variables to decisively affect the electrical transport properties.In this work,Cl as a donor dopant is effective to provide extra electrons in n-type BiSbSe_(3),and the carrier concentration and effective mass can be well optimized simultaneously with increasing Cl content owing to the multiple conduction bands in BiSbSe_(3).What’s more,maximum weighted mobility~53 cm^(2)V^(-1)s^(-1)is obtained in Cl-doped BiSbSe_(3),which contributes to a largely enhanced power factor~4.8μW cm^(-1)K^(-2)at room temperature and outperforms other halogen-doped BiSbSe_(3) samples.Finally,combining the significantly enhanced power factor and maintained low thermal conductivity,a maximum ZT~1.0 is achieved in Cl-doped BiSbSe_(3) at 800 K.展开更多
The carrier screening effect occurs commonly in dielectric materials. It reduces the electric potential gradient, thus negatively affecting the functionality of resistive random access memory (RRAM) devices. An Au/Z...The carrier screening effect occurs commonly in dielectric materials. It reduces the electric potential gradient, thus negatively affecting the functionality of resistive random access memory (RRAM) devices. An Au/ZnO film/Al-doped ZnO device fabricated in this work exhibited no resistive switching (RS), which was attributed to the carrier screening effect. Therefore, annealing was used for alleviating the screening effect, significantly enhancing the RS property. In addition, different on/off ratios were obtained for various bias values, and the screening effect was accounted for by investigating electron transport mechanisms. Furthermore, different annealing temperatures were employed to modulate the free carrier concentration in ZnO films to alleviate the screening effect. The maximal on/off ratio reached 10s at an annealing temperature of 600 ℃, yielding the lowest number of free carriers and the weakest screening effect in ZnO films. This work investigates the screening effect in RS devices. The screening effect not only modulates the characteristics of memory devices but also provides insight into the mechanism of RS in these devices.展开更多
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)(ⅡTP-2020-2020-0-01655)funded and conducted under the Competency Development Program for Industry Specialists of the Korean Ministry of Trade,Industry and Energy(MOTIE),operated by Korea Institute for Advancement of Technology(KIAT)(No.P0012453,Next-generation Display Expert Training Project for Innovation Process and Equipment,Materials Engineers)。
文摘This study proposed a strategy for effectively diminishing the carrier concentration in Cu_(2)Te by introducing graphene sheets,Based on thermoelectric property measurements and single parabolic band modeling,the incorporated graphene effectively reduced the carrier concentration,not only enhancing the thermoelectric performance of the Cu_(2)Te/graphene composite but also substantially improving its figure of merit up to ~1.47 at 1000 K,which is 268% higher than that of pristine Cu_(2)Te,This study gives an insight into the control of carrier concentration and thermoelectric properties in Cu_(2)Te,and it could be extended to other copper chalcogenides for excellent thermoelectrics.
基金Project supported by the National Key R&D Program of China (Grant No. 2021YFA1202802)the National Natural Science Foundation of China (Grant Nos. 21875280,21991150, 21991153, and 22022205)+1 种基金the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-054)the Special Foundation for Carbon Peak Neutralization Technology Innovation Program of Jiangsu Province,China(Grant No. BE2022026)
文摘The charge carrier concentration profile is a critical factor that determines semiconducting material properties and device performance.Dielectric force microscopy(DFM)has been previously developed to map charge carrier concentrations with nanometer-scale spatial resolution.However,it is challenging to quantitatively obtain the charge carrier concentration,since the dielectric force is also affected by the mobility.Here,we quantitative measured the charge carrier concentration at the saturation mobility regime via the rectification effect-dependent gating ratio of DFM.By measuring a series of n-type GaAs and GaN thin films with mobility in the saturation regime,we confirmed the decreased DFM-measured gating ratio with increasing electron concentration.Combined with numerical simulation to calibrate the tip–sample geometry-induced systematic error,the quantitative correlation between the DFM-measured gating ratio and the electron concentration has been established,where the extracted electron concentration presents high accuracy in the range of 4×10^(16)–1×10^(18)cm^(-3).We expect the quantitative DFM to find broad applications in characterizing the charge carrier transport properties of various semiconducting materials and devices.
基金supported by the National Natural Science Foundation of China(No.U19A2018)the China National University Student Innovation and Entrepreneurship Training Program(S202310530059)。
文摘All-solid-state fluoride ion batteries(FIBs)have been recently considered as a post-lithium-ion battery system due to their high safety and high energy density.Just like all solid-state lithium batteries,the key to the development of FIBs lies in room-temperature electrolytes with high ionic conductivity.β-KSbF_(4) is a kind of promising solid-state electrolyte for FIBs owing to its rational ionic conductivity and relatively wide electrochemical stability window at room temperature.However,the previous synthesis routes ofβ-KSbF_(4) required the use of highly toxic hydrofluoric acid and the ionic conductivity of as-prepared product needs to be further improved.Herein,the β-KSbF_(4) sample with an ionic conductivity of 1.04×10^(-4)s cm^(-1)(30°C)is synthesized through the simple solid-state route.In order to account for the high ionic conductivity of the as-synthesizedβ-KSbF_(4),X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive X-ray spectroscopy(EDS)are used to characterize the physic-ochemical properties.The results show that the as-synthesizedβ-KSbF_(4) exhibits higher carrier concentra-tion of 1.0×10^(-6)S cm-Hz^(-1)K and hopping frequency of 1.31×10^(6)Hz at 30°C due to the formation of the fluorine vacancies.Meanwhile,the hopping frequency shows the same trend as the changes of ionic conductivity with the changes of temperature,while the carrier concentration is found to be almost con-stant.The two different trends indicate the hopping frequency is mainly responsible for the ionic conduc-tion behavior withinβ-KSbF_(4).Furthermore,the all-solid-state FIBs,in which Ag and Pb+PbF_(2) are adopted as cathode and anode,andβ-KSbF_(4) as fluoride ion conductor,are capable of reversible charge and discharge.The assembled FIBs show a discharge capacity of 108.4 mA h g^(-1) at 1st cycle and 74.2 mA h g^(-1) at 50th cycle.Based on an examination of the capacity decay mechanism,it has been found that deterioration of the electrolyte/electrode interface is an important reason for hindering the commer-cial application of FIBs.Hence,the in-depth comprehension of the ion transport characteristics inβ-KSbF_(4) and the interpretation of the capacity fading mechanism will be conducive to promoting development of high-performanceFIBs.
基金Funded by the National Natural Science Foundation of China(Nos.51278058,41404095,51277012,61201233)the Fundamental Research Funds for the Central Universities(Nos.2013G1241120,2013G1241107,2013G1241114,CHD2011ZD004)+1 种基金Research Fund of Shaanxi Provincial Research Center for Telecommunication ASIC Design(No.SXASIC2014-1)the Shaanxi Science and Technology Research and Development Program(No.2013KJXX-93)
文摘Intrinsic carrier concentration(ni) is one of the most important physical parameters for understanding the physics of strained Si and Si1-xGex materials as well as for evaluating the electrical properties of Si-based strained devices. Up to now, the report on quantitative results of intrinsic carrier concentration in strained Si and Si1-xGex materials has been still lacking. In this paper, by analyzing the band structure of strained Si and Si1-xGex materials, both the effective densities of the state near the top of valence band and the bottom of conduction band( Nc and Nv) at 218, 330 and 393 K and the intrinsic carrier concentration related to Ge fraction(x) at 300 K were systematically studied within the framework of KP theory and semiconductor physics. It is found that the intrinsic carrier concentration in strained Si(001) and Si1-xGex(001) and(101) materials at 300 K increases significantly with increasing Ge fraction(x), which provides valuable references to understand the Sibased strained device physics and design.
基金financially supported by the National Natural Science Foundation of China (Grant No. 52071041, 11874356, 51802034)supported by the Key Research Program of Frontier Sciences, CAS (Grant No.QYZDB-SSW-SLH016)
文摘Mg_(3)Sb_(2)has attracted intensive attention as a typical Zintl-type thermoelectric material.Despite the exceptional thermoelectric performance in n-type Mg_(3)Sb_(2),the dimensionless figure of merit(zT)of p-type Mg_(3)Sb_(2)remains lower than 1,which is mainly attributed to its inferior electrical properties.Herein,we synergistically optimize the thermoelectric properties of p-type Mg_(3)Sb_(2)materials via codoping of Cd and Ag,which were synthesized by high-energy ball milling combined with hot pressing.It is found that Cd doping not only increases the carrier mobility of p-type Mg_(3)Sb_(2),but also diminishes its thermal conductivity(κ_(tot)),with Mg_(2.85)Cd_(0.5)Sb_(2)achieving a lowκtot value of∼0.67 W m^(−1)K^(−1)at room temperature.Further Ag doping elevates the carrier concentration,so that the power factor is optimized over the entire temperature range.Eventually,a peak zT of∼0.75 at 773 K and an excellent average zT of∼0.41 over 300−773 K are obtained in Mg_(2.82)Ag_(0.03)Cd_(0.5)Sb_(2),which are∼240%and∼490%higher than those of pristine Mg_(3.4)Sb_(2),respectively.This study provides an effective pathway to synergistically improve the thermoelectric performance of p-type Mg_(3)Sb_(2)by codoping Cd and Ag,which is beneficial to the future applications of Mg_(3)Sb_(2)-based thermoelectric materials.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0702100and 2022YFB3803900)the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences (CAS)’ Large-Scale Scientific Facility (Grant No. U1932106)the Sichuan University Innovation Research Program of China (Grant No. 2020SCUNL112)。
文摘AgCrSe2-based compounds have attracted much attention as an environmentally friendly thermoelectric material in recent years due to the intriguing liquid-like properties.However,the ultra-low carrier concentration and the high Ag_(Cr)deep-level defects limit the overall thermoelectric performance.Here,we successfully introduced Pb into Ag-deficient Ag_(0.97)CrSe_(2) alloys to tune the carrier concentration across a broad temperature range.The Pb^(2+) as an acceptor dopant preferentially occupies Cr sites,boosting the hole carrier concentration to 1.77×10^(19) cm^(-3) at room temperature.Furthermore,the Pb strongly inhibits the creation of intrinsic Ag_(Cr) defects,weakens the increased thermal excited ionization with the increasing temperature and slowed the rising trend of the carrier concentration.The designed carrier concentration matches the theoretically predicted optimized one over the entire temperature range,leading to a remarkable enhancement in power factor,especially the maximum power factor of ~500 μW·m^(-1)·K^(-2) at 750 K is superior to most previous results.Additionally,the abundant point defects promote phonon scattering,thus reducing the lattice thermal conductivity.As a result,the maximum figure of merit zT(~0.51 at 750 K) is achieved in Ag_(0.97)Cr_(0.995)Pb_(0.005)Se_(2).This work confirms the feasibility of manipulating deep-level defects to achieve temperature-dependent optimal carrier concentration and provides a valuable guidance for other thermoelectric materials.
基金supported by the National Science Fund for Distinguished Young Scholars(No.51925101)the Tencent Xplorer Prize,the National Natural Science Foundation of China(Nos.52371208,52250090,52002042,51772012,51571007and 12374023)+1 种基金Beijing Municipal Natural Science Foundation(JQ18004)the 111 Project(B17002)。
文摘Indium selenide(InSe),as a wide-bandgap semiconductor,has received extensive attention in the flexible electronics field in recent years due to its exceptional plasticity and promising thermoelectric performance.However,the low carrier concentration severely limits its thermoelectric performance improvement.In this work,we conducted contrasting strategies that can be employed to increase the carrier concentration of InSe,including bandgap narrowing and heterovalent doping.Specifically,the carrier concentration initially increases as a result of the reduced bandgap upon Te alloying and then slightly decreases due to the weak electronegativity of Te.Whereas Br doping realizes high carrier concentration by pushing the Fermi level into the conduction bands and activating the multiple bands.On the other hand,both Te and Br obviously suppress the thermal conductivity due to the point defect scattering.By contrast,Br doping realizes a higher thermoelectric performance with a maximum ZT of~0.13 at 773 K benefiting from the better optimization of carrier concentration.This work elucidates the strategies for enhancing carrier concentration at anion sites and demonstrates the high efficiency of halogen doping in InSe.Moreover,the carrier concentration of InSe is promising to be further optimized,and future work should focus on employing approaches such as cation doping or secondphase compositing.
基金supported by the National Natural Science Foundation of China(No.51871240).
文摘Cu_(3)SbSe_(4),a copper-based sulfide free of rare earth elements,has received extensive attention in ther-moelectric materials.However,its low carrier concentration restricts its widespread application.In this study,a microwave-assisted solution synthesis method was used to produce samples of Cu_(3)SbSe_(4),which enabled the formation of CuSe in situ and increased the yield.Through the use of first-principles cal-culations,structural analysis,and performance evaluation,it was found that CuSe can enhance the carrier concentration and that induced nano-defects have a positive effect on reducing the lattice thermal conductivity.Moreover,doping with Sn decreases the band gap of the system and moves the Fermi level into the valence band,increasing the carrier concentration to 1.15×10^(-20)cm^(-3).Finally,the zT value of the Cu_(3)Sb_(0.98)Sn_(0.02)Se_(4)sample was achieved at 1.05 at 623 K when the theoretical yield of a single synthesis was 10 mmol.
基金supported by the National Natural Science Foundation of China(Grant nos.21773218,61974063)the Sichuan Province(Grant no.2018JY0206)the China Academy of Engineering Physics(Grant no.YZJJLX2018007)。
文摘Sensitive and reliable X-ray detectors are essential for medical radiography,industrial inspection and security screening.Lowering the radiation dose allows reduced health risks and increased frequency and fidelity of diagnostic technologies for earlier detection of disease and its recurrence.Three-dimensional(3 D)organic-inorganic hybrid lead halide perovskites are promising for direct X-ray detection-they show improved sensitivity compared to conventional X-ray detectors.However,their high and unstable dark current,caused by ion migration and high dark carrier concentration in the 3 D hybrid perovskites,limits their performance and long-term operation stability.Here we report ultrasensitive,stable X-ray detectors made using zero-dimensional(0 D)methylammonium bismuth iodide perovskite(MA3Bi2I9)single crystals.The 0 D crystal structure leads to a high activation energy(Ea)for ion migration(0.46 e V)and is also accompanied by a low dark carrier concentration(~10^6 cm^-3).The X-ray detectors exhibit sensitivity of 10,620μC Gy-1 air cm-2,a limit of detection(Lo D)of 0.62 nG yairs-1,and stable operation even under high applied biases;no deterioration in detection performance was observed following sensing of an integrated X-ray irradiation dose of^23,800 m Gyair,equivalent to>200,000 times the dose required for a single commercial X-ray chest radiograph.Regulating the ion migration channels and decreasing the dark carrier concentration in perovskites provide routes for stable and ultrasensitive X-ray detectors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1601213 and 51572287)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH013)
文摘The Zintl compound Mg3Sb2 has been recently identified as promising thermoelectric material owing to its high thermoelectric performance and cost-effective,nontoxicity and environment friendly characteristics.However,the intrinsically p-type Mg3Sb2 shows low figure of merit(z T = 0.23 at 723 K) for its poor electrical conductivity.In this study,a series of Mg(3-x)LixSb2 bulk materials have been prepared by high-energy ball milling and spark plasma sintering(SPS) process.Electrical transport measurements on these materials revealed significant improvement on the power factor with respect to the undoped sample,which can be essentially attributed to the increased carrier concentration,leading to a maximum z T of0.59 at 723 K with the optimum doping level x = 0.01.Additionally,the engineering z T and energy conversion efficiency are calculated to be 0.235 and 4.89%,respectively.To our best knowledge,those are the highest values of all reported p-type Mg3Sb2-based compounds with single element doping.
文摘Nitrogen-doped, p-type ZnO thin films were grown successfully on sapphire (0001) substrates by using atomic layer epitaxy (ALE). Zn(C2H5)2 [Diethylzinc, DEZn], H2O and NH3 were used as a zinc precursor, an oxidant and a doping source gas, respectively. The lowest electrical resistivity of the p-type ZnO films grown by ALE and annealed at 1000 ℃ in an oxygen atmosphere for 1 h was 18.3 Ω·cm with a hole concentration of 3.71×1017 cm-3. Low temperature-photoluminescence analysis and time-dependent Hall measurement results support that the nitrogen-doped ZnO after annealing is a p-type semiconductor.
基金financially supported by the National Natural Science Foundation of China (No.50872090)Guizhou Province-University Scientific and Technological Cooperation Program (No.[2011]7002)
文摘BaZr1-xScxO3-0.5x (x=0.07,0.10,0.13,0.16) powders were prepared by solid-state reaction method,and ZnO was used as sintering aid.Samples with different amount of ZnO additive were sintered at 1450·C for 6 h in air.Single cubic perovskite phase proton conductors were obtained.Conductivity was measured by electrochemical workstation.It was shown that Sc doping could increase conductivity through enhancing the carrier concentration in the material,but excessive Sc content might decrease the carrier concentration because of its charge compensation.ZnO had an influence on carrier concentration and mobility and affected the electrical conductivity.2 mol% ZnO and 13 mol% ScO1.5 doped sample showed the highest DC conductivity of 3.6×10-3 S·cm-1 tested at 800·C in wet hydrogen atmosphere.
文摘A mathematical model linking thermoelasticity to photothermal experiments is proposed with the consideration of the photothermal effect.The system equations for coupled plasma,heat conduction with phase-lags(PLs),and motion equations are introduced and solved by using the Laplace transform technique.The photothermal,thermal,and elastic waves in a rotating solid cylinder of semiconductor material are analyzed with the proposed model.The cylinder surface is constrained and subjected to a time-dependent pulse heat flux.The sensitivity of the physical fields for the angular velocity,PLs,and thermal vibration parameters is investigated.In addition,the effects of the effective parameters on the physical quantities are graphically illustrated and discussed in detail.
文摘Highly conductive boron-doped hydrogenated mieroerystalline silicon (μc-Si:H) films are prepared by very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) at the substrate temperatures (Ts) ranging from 90℃ to 270℃. The effects of Ts on the growth and properties of the films are investigated. Results indicate that the growth rate, the electrical (dark conductivity, carrier concentration and Hall mobility) and structural (crystallinity and grain size) properties are all strongly dependent on Ts. As Ts increases, it is observed that 1) the growth rate initially increases and then arrives at a maximum value of 13.3 nm/min at Ts=210℃, 2) the crystalline volume fraction (Xc) and the grain size increase initially, then reach their maximum values at TS=140℃, and finally decrease, 3) the dark conductivity (σd), carrier concentration and Hall mobility have a similar dependence on Ts and arrive at their maximum values at Ts-190℃. In addition, it is also observed that at a lower substrate temperature Ts, a higher dopant concentration is required in order to obtain a maximum σd.
基金National Natural Science Foundation of China(30470469)
文摘An accurate photodiode circuit macro-model is proposed for SPICE simulation. The definition and implementation of the macro-model is based on carrier stationary continuity equation. In this macro-model, the photodiode is a device of three pins, one for light intensity input and the other two for photocurrent output, which represent the relationship between photocurrent and incident light. The validity of the proposed macro-model is demonstrated with its PSPICE simulation result compared with reported experimental data.
文摘Experimentally the plateaus characteristic for the integer quantum Hall effect is obtained in vicinity of specific values of the magnetic induction. The paper demonstrates that the ratios of these induction values to carrier concentration in the planar crystalline samples approach systematically the quanta of the magnetic flux important for the behavior of superconductors. Moreover, the same quanta can be deduced from the Landau levels theory and their application in the magnetoresistance theory gives results being in accordance with experiments. The quanta of the magnetic flux similar to those for the integer quantum Hall effect can be obtained also for the fractional quantum Hall effect. This holds on condition the experimental ratio of the magnetic flux to carrier concentration is multiplied by the filling factor of the Landau level.
基金supported by the Doctoral Research Startup Funding of Shijiazhuang University(No.22BS006)the National Natural Science Foundation of China(No.52102234)+1 种基金Hebei Province Introduced Overseas Talents Funding Project(No.C20210313)the College Students Innovation and Entrepreneurship Training Program of Shijiazhuang University(No.scxm063)。
文摘Thermoelectric materials possess the unique capability to convert thermal energy into electric energy and vice versa,making them promising for waste heat recovery and efficient cooling systems.Currently,extensively investigated thermoelectric materials such as Bi2Te3,PbTe and GeTe exhibit superior thermoelectric properties at room temperature and medium temperature regions.However,the broad application of these thermoelectric materials has been impeded by the high cost and restricted accessibility of Te and Ge in the earth's crust.Over the past few years,researchers have shown increasing interest in PbSe-and PbS-based materials,primarily attributed to their abundant elemental supply and relatively low costs.The assessment of research progress and a comprehensive overview of optimization strategies in time can significantly contribute to further improving the thermoelectric performance.These strategies include optimizing carrier concentration(aliovalent doping,dynamic doping and defect state),enhancing density-of-state effective mass(band convergence,band flattening and energy filtering effect),optimizing carrier mobility(band sharpening and band alignment)and reducing lattice thermal conductivity(all-scale hierarchical defect structures designing).This systematic summary and analysis provide novel insights and perspectives for the development of thermoelectric materials.
基金This work was supported by the National Basic Research Program of China (No. 2013CB932602), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (Nos. 51527802, 51372023 and 51232001), Beijing Municipal Science & Technology Commission, the Fundamental Research Funds for Central Universities.
文摘Sandwich-style memristor devices were synthesized by electrochemical deposition with a ZnO film serving as the active layer between Al-doped ZnO (AZO) and Au electrodes. The carrier concentration of the ZnO films is controlled by adding HNO3 during the growth process. A resulting increase in carrier concentration from 10^17 to 10^19 cm^-3 was observed, along with a corresponding drop in the on--off ratio from 6,437% to 100%. The resistive switching characteristics completely disappeared when the carrier concentration was above 1029 cm-3, making it unsuitable for a memory device. The decreasing switching ratio is attributed to a reduction in the driving force for oxygen vacancy drift. Systematic analysis of the migration of oxygen vacancies is presented, including the concentration gradient and electrical potential gradient. Such oxygen vacancy migration dynamics provide insight into the mechanisms of the oxygen vacancy drift and provide valuable information for industrial production of memristor devices.
基金supported financially by the National Natural Science Foundation of China(Nos.51772012 and 51671015)the National Key Research and Development Program of China(Nos.2018YFB0703600 and 2018YFA0702100)+5 种基金the Beijing Natural Science Foundation(No.JQ18004)the Shenzhen Peacock Plan Team(No.KQTD2016022619565991)111 Project(No.B17002)financial support from Postdoctoral Science Foundation of China(No.2019M660399)the National Postdoctoral Program for Innovative Talents(No.BX20190028)support from the National Science Fund for Distinguished Young Scholars(No.51925101)。
文摘Possessing inherently low thermal conductivity,BiSbSe_(3) is a promising thermoelectric material for medium temperature.Therefore,to substantially optimize the thermoelectric performance of BiSbSe_(3),researchers mainly focus on the strategies to improve its electrical transport properties.Among these strongly coupled thermoelectric parameters,carrier concentration and effective mass are two intrinsic variables to decisively affect the electrical transport properties.In this work,Cl as a donor dopant is effective to provide extra electrons in n-type BiSbSe_(3),and the carrier concentration and effective mass can be well optimized simultaneously with increasing Cl content owing to the multiple conduction bands in BiSbSe_(3).What’s more,maximum weighted mobility~53 cm^(2)V^(-1)s^(-1)is obtained in Cl-doped BiSbSe_(3),which contributes to a largely enhanced power factor~4.8μW cm^(-1)K^(-2)at room temperature and outperforms other halogen-doped BiSbSe_(3) samples.Finally,combining the significantly enhanced power factor and maintained low thermal conductivity,a maximum ZT~1.0 is achieved in Cl-doped BiSbSe_(3) at 800 K.
基金Acknowledgements This work was supported by the National Basic Research Program of China (No. 2013CB932602), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (Nos. 51527802, 51372023, and 51232001), Beijing Municipal Science & Technology Commission, the Fundamental Research Funds for Central Universities.
文摘The carrier screening effect occurs commonly in dielectric materials. It reduces the electric potential gradient, thus negatively affecting the functionality of resistive random access memory (RRAM) devices. An Au/ZnO film/Al-doped ZnO device fabricated in this work exhibited no resistive switching (RS), which was attributed to the carrier screening effect. Therefore, annealing was used for alleviating the screening effect, significantly enhancing the RS property. In addition, different on/off ratios were obtained for various bias values, and the screening effect was accounted for by investigating electron transport mechanisms. Furthermore, different annealing temperatures were employed to modulate the free carrier concentration in ZnO films to alleviate the screening effect. The maximal on/off ratio reached 10s at an annealing temperature of 600 ℃, yielding the lowest number of free carriers and the weakest screening effect in ZnO films. This work investigates the screening effect in RS devices. The screening effect not only modulates the characteristics of memory devices but also provides insight into the mechanism of RS in these devices.