期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Low Crosstalk Three-Color Infrared Detector by Controlling the Minority Carriers Type of InAs/GaSb Superlattices for Middle-Long and Very-Long Wavelength 被引量:5
1
作者 蒋洞微 向伟 +7 位作者 国凤云 郝宏玥 韩玺 李晓超 王国伟 徐应强 于清江 牛智川 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第4期151-154,共4页
We report a type-Ⅱ InAs/GaSb superlattice three-color infrared detector for mid-wave (MW), long-wave (LW), and very long-wave (VLW) detections. The detector structure consists of three contacts of NIPIN archite... We report a type-Ⅱ InAs/GaSb superlattice three-color infrared detector for mid-wave (MW), long-wave (LW), and very long-wave (VLW) detections. The detector structure consists of three contacts of NIPIN architecture for MW and LW detections, and hetero-junction NIP architecture for VLW detection. It is found that the spectral crosstalks can be significantly reduced by controlling the minority carriers transport via doping beryllium in the two active regions of NIPIN section. The crosstalk detection at MW, LW, and VLW signals are achieved by selecting the bias voltages on the device. At 77K, the cutoff wavelengths of the three-color detection are 5.3μm (at OmV), 141μm (at 300mV) and 19μm (at -20mV) with the detectivities of 4.6xlO11 cm.Hzl/ZW-1, 2.3×10^10 cm.Hzl/2W-1, and 1.0×10^10cm.Hzl/2W-1 for MW, LW and VLW. The crosstalks of the MW channel, LW channel, and VLW channel are almost 0, 0.25, and 0.6, respectively. 展开更多
关键词 GaSb on of Low Crosstalk Three-Color Infrared Detector by Controlling the Minority carriers Type of InAs/GaSb Superlattices for Middle-Long and Very-Long Wavelength by InAs for LONG
下载PDF
High-performance multilayer WSe2 field-effect transistors with carrier type control 被引量:1
2
《Nano Research》 SCIE EI CAS CSCD 2018年第2期722-730,共9页
In this stud high-performance multilayer WSe2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type cont... In this stud high-performance multilayer WSe2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type control in multilayer WSe2 FET devices with Cr/Au contacts is initially demonstrated by modulating the WSe2 thickness. The carrier type evolves with increasing WSe2 channel thickness, being p-type, ambipolar, and n-type at thicknesses 〈 3, - 4, and 〉 5 nm, respectively. The thickness-dependent carrier type is attributed to changes in the bandgap of WSe2 as a function of the thickness and the carrier band offsets relative to the metal contacts. Furthermore, we present a strong hole carrier doping effect via remote oxygen plasma treatment. It non-degenerately converts n-type characteristics into p-type and enhances field-effect hole mobility by three orders of magnitude. This work demonstrates progress towards the realization of high-performance multilayer WSe2 FETs with carrier type control, potentially extendable to other transition metal dichalcogenides, for future electronic and oDtoelectronic alpplications. 展开更多
关键词 transition metaldichalcogenide field-effect transistors carrier control plasma treatment carrier mobility
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部