期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A study on the minority carrier diffusion length in n-type GaN films
1
作者 DENG Dongmei ZHAO Degang +2 位作者 WANG Jinyan YANG Hui WEN Cheng Paul 《Rare Metals》 SCIE EI CAS CSCD 2007年第3期271-275,共5页
The minority carrier diffusion length of n-type GaN fdms grown by metalorganic chemical vapor deposition (MOCVD) has been studied by measuring the surface photovoltaic (PV) spectra. It was found that the minority ... The minority carrier diffusion length of n-type GaN fdms grown by metalorganic chemical vapor deposition (MOCVD) has been studied by measuring the surface photovoltaic (PV) spectra. It was found that the minority carrier diffusion length of undoped n-type GaN is considerably larger than that in lightly Si-doped GaN. However, the data suggested that the dislocation and electron concentration appear not to be responsible for the minority cartier diffusion length. It is suggested that Si doping plays an important role in decreasing the minority carrier diffusion length. 展开更多
关键词 compound semiconductor material minority carrier diffusion length photovoltaic spectrum GAN
下载PDF
Photoluminescence Analysis of Electron Damage for Minority Carrier Diffusion Length in GaInP/GaAs/Ge Triple-Junction Solar Cells
2
作者 Rui Wu Jun-Ling Wang +1 位作者 Gang Yan Rong Wang 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第4期70-73,共4页
Photoluminescence(PL) measurements are carried out to investigate the degradation of GaInP top cell and GaAs middle cell for GaInP/GaAs/Ge triple-junction solar cells irradiated with 1.0, 1.8 and 11.5 MeV electrons ... Photoluminescence(PL) measurements are carried out to investigate the degradation of GaInP top cell and GaAs middle cell for GaInP/GaAs/Ge triple-junction solar cells irradiated with 1.0, 1.8 and 11.5 MeV electrons with fluences ranging up to 3 × 10^15, 1 × 10^15 and 3 × 10^14 cm^-2, respectively. The degradation rates of PL intensity increase with the electron fluence and energy. Furthermore, the damage coefficient of minority carrier diffusion length is estimated by the PL radiative efficiency. The damage coefficient increases with the electron energy. The relation of damage coefficient to electron energy is discussed with the non-ionizing energy loss(NIEL), which shows a quadratic dependence between damage coefficient and NIEL. 展开更多
关键词 In Photoluminescence Analysis of Electron Damage for Minority carrier diffusion length in GaInP/GaAs/Ge Triple-Junction Solar Cells Ge
下载PDF
High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interracial engineering 被引量:15
3
作者 Sai Bai Zhongwei Wu +10 位作者 Xiaojing Wu Yizheng Jin Ni Zhao Zhihui Chen Qingqing Mei Xin Wang Zhizhen Ye Tao Song Ruiyuan Liu Shuit-tong Lee Baoquan Sun 《Nano Research》 SCIE EI CAS CSCD 2014年第12期1749-1758,共10页
We demonstrate that charge carrier diffusion lengths of two classes of perovskites, CH3NH3PbI3-xClx and CH3NH3PbI3, are both highly sensitive to film processing conditions and optimal processing procedures are critica... We demonstrate that charge carrier diffusion lengths of two classes of perovskites, CH3NH3PbI3-xClx and CH3NH3PbI3, are both highly sensitive to film processing conditions and optimal processing procedures are critical to preserving the long carrier diffusion lengths of the perovskite films. This understanding, together with the improved cathode interface using bilayer-structured electron transporting interlayers of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/ZnO, leads to the successful fabrication of highly efficient, stable and reproducible planar heterojunction CH3NH3PbI3-xCl2 solar cells with impressive power-conversion efficiencies (PCEs) up to 15.9%. A 1-square-centimeter device yielding a PCE of 12.3% has been realized, demonstrating that this simple planar structure is promising for large-area devices. 展开更多
关键词 perovskite solar cells planar heterojunction charge carrier diffusion lengths ZnO nanocrystal films large area devices
原文传递
Over 12%efficient kesterite solar cell via back interface engineering 被引量:2
4
作者 Yunhai Zhao Zixuan Yu +8 位作者 Juguang Hu Zhuanghao Zheng Hongli Ma Kaiwen Sun Xiaojing Hao Guangxing Liang Ping Fan Xianghua Zhang Zhenghua Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期321-329,I0008,共10页
Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)has attracted considerable attention as a non-toxic and earthabundant solar cell material.During selenization of CZTSSe film at high temperature,the reaction between CZTSSe and Mo... Kesterite Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)has attracted considerable attention as a non-toxic and earthabundant solar cell material.During selenization of CZTSSe film at high temperature,the reaction between CZTSSe and Mo is one of the main reasons that result in unfavorable absorber and interface quality,which leads to large open circuit voltage deficit(VOC-def)and low fill factor(FF).Herein,a WO_(3)intermediate layer introduced at the back interface can effectually inhibit the unfavorable interface reaction between absorber and back electrode in the preliminary selenization progress;thus high-quality crystals are obtained.Through this back interface engineering,the traditional problems of phase segregation,voids in the absorber and over thick Mo(S,Se)_(2)at the back interface can be well solved,which greatly lessens the recombination in the bulk and at the interface.The increased minority carrier diffusion length,decreased barrier height at back interface contact and reduced deep acceptor defects give rise to systematic improvement in VOCand FF,finally a 12.66%conversion efficiency for CZTSSe solar cell has been achieved.This work provides a simple way to fabricate highly efficient solar cells and promotes a deeper understanding of the function of intermediate layer at back interface in kesterite-based solar cells. 展开更多
关键词 Cu_(2)ZnSn(S Se)_(4) WO_(3)intermediate layer Crystal growth Minority carrier diffusion length Interface contact quality
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部