Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves...Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.展开更多
The Sulige tight gas reservoir is characterized by low-pressure, low-permeability and lowabundance. During production, gas flow rate and reservoir pressure decrease sharply; and in the shut- in period, reservoir press...The Sulige tight gas reservoir is characterized by low-pressure, low-permeability and lowabundance. During production, gas flow rate and reservoir pressure decrease sharply; and in the shut- in period, reservoir pressure builds up slowly. Many conventional methods, such as the indicative curve method, systematic analysis method and numerical simulation, are not applicable to determining an appropriate gas flow rate. Static data and dynamic performance show permeability capacity, kh is the most sensitive factor influencing well productivity, so criteria based on kh were proposed to classify vertical wells. All gas wells were classified into 4 groups. A multi-objective fuzzy optimization method, in which dimensionless gas flow rate, period of stable production, and recovery at the end of the stable production period were selected as optimizing objectives, was established to determine the reasonable range of gas flow rate. In this method, membership functions of above-mentioned optimizing factors and their weights were given. Moreover, to simplify calculation and facilitate field use, a simplified graphical illustration (or correlation) was given for the four classes of wells. Case study illustrates the applicability of the proposed method and graphical correlation, and an increase in cumulative gas production up to 37% is achieved and the well can produce at a constant flow rate for a long time.展开更多
It is known that gas flow rate is a key factor in controlling industrial plasma processing. In this paper, a 2D PIC/MCC model is developed for an rf hollow cathode discharge with an axial nitrogen gas flow. The effect...It is known that gas flow rate is a key factor in controlling industrial plasma processing. In this paper, a 2D PIC/MCC model is developed for an rf hollow cathode discharge with an axial nitrogen gas flow. The effects of the gas flow rate on the plasma parameters are calculated and the results show that: with an increasing flow rate, the total ion(N+2, N+) density decreases, the mean sheath thickness becomes wider, the radial electric field in the sheath and the axial electric field show an increase, and the energies of both kinds of nitrogen ions increase;and, as the axial ion current density that is moving toward the ground electrode increases, the ion current density near the ground electrode increases. The simulation results will provide a useful reference for plasma jet technology involving rf hollow cathode discharges in N2.展开更多
This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-highfrequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers w...This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-highfrequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of - 1.0 nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300 sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 A/s (1 A=0.1 nm).展开更多
Non-equilibrium vapor condensation of moist gas through a sonic nozzle is a very complicated phenomenon and is related to the measurement accuracy of sonic nozzle.A gas-liquid two-phase model for the moist gas condens...Non-equilibrium vapor condensation of moist gas through a sonic nozzle is a very complicated phenomenon and is related to the measurement accuracy of sonic nozzle.A gas-liquid two-phase model for the moist gas condensation flow was built and validated by moist nitrogen experiment of homogeneous nucleation through a transonic nozzle.The effects of carrier gas pressure on position and status of condensation onset in sonic nozzle were investigated in detail.The results show that condensation process is not easy to occur at lower carrier pressure and throat diameter.The main factors influencing condensation onset are boundary layer thickness,heat capacity of carrier gas and expansion rate.All of results can be used to further analyze the effect of condensation on mass flow-rate of sonic nozzle.展开更多
A direct current(DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas.Using ...A direct current(DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas.Using optical and electrical methods,the discharge characteristics are investigated for the diffuse plasma plume.Results indicate that the discharge has a pulse characteristic,under the excitation of a DC voltage.The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode.It is found that,with an increment of the gas flow rate,both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode,reach their minima at about1.5 L/min,and then slightly increase in the turbulent mode.However,the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min,and then slightly decreases in the turbulent mode.展开更多
A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a...A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up,and measurements were carried out to validate the mathematical model.The results show that,with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min^(-1),the mixing time predicted by the mathematical model agrees well with the measured values.The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations,where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value.In addition,the circulation flow rate was 9 kg·s^(-1).When the gas blowing nozzle was horizontally rotated by either 30° or 45°,the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle,due to the rotational flow formed in the up-snorkel.Furthermore,the mixing time at the monitoring point 1,2,and 3 was shortened by around 21.3%,28.2%,and 12.3%,respectively.With the nozzle angle of 30° and 45°,the averaged residence time of 128 bubbles in liquid was increased by around 33.3%.展开更多
The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages i...The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages in the pipeline occur occasionally. To maintain the natural gas flow in the pipeline, we proposed a method for analyzing blockages and ascribed them to the hydrate formation and agglomeration. A new high-pressure flow loop was developed to investigate hydrate plug formation and hydrate particle size, using a mixture of diesel oil, water, and natural gas as experimental fluids. The influences of pressure and initial flow rate were also studied. Experimental results indicated that when the flow rate was below 850 kg/h, gas hydrates would form and then plug the pipeline, even at a low water content (10%) of a water/oil emulsion. Furthermore, some practical suggestions were made for daily management of the subsea pipeline.展开更多
The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigate...The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigated.The operating current has been shown to significantly affect the time-resolved voltage waveforms of the discharge,particularly at flow rate =21 min^-1.When the current was lower than 140 mA,sinusoidal waveforms with regular variation periods of 13.5-17.0 ms can be observed (flow rate =21 min^-1).The restrike mode characterized by serial sudden drops of voltage appeared under all studied conditions.Increasing the flow rate from 8 to 121 min^-1 (at the same current) led to a shift of arc rotation mode which would then result in a significant drop of discharge voltage (around 120-200 V).For a given flow rate,the reduction of current resulted in a nearly linear increase of voltage.展开更多
Based on the three-cathode plasma spraying system,tantalum(Ta)coatings were pre-pared on the substrate of CuCrZr alloy.The effects of different auxiliary gas(helium)flow rates on the microstructure,phase composition,m...Based on the three-cathode plasma spraying system,tantalum(Ta)coatings were pre-pared on the substrate of CuCrZr alloy.The effects of different auxiliary gas(helium)flow rates on the microstructure,phase composition,mechanical and wear resistance properties of Ta coatings were studied.The results showed that the oxidation degree of the coatings decreases first and then increases with the increase of the auxiliary gas flow.When the auxiliary gas flow rate is 70 L·min-1,the oxidation degree of the coating is the lowest,minimum value of the porosity is 0.21%,and the bonding strength reaches the maximum,59.3 MPa.At this time,the coating wear rate is 0.0012 mm^(3)·N^(-1)·m^(-1)with the best wear resistance.This indicates that the auxiliary gas flow has an important influence on the quality and surface mechanical properties of tantalum coating.展开更多
The lung is an important organ that takes part in the gas exchange process. In the study of gas transport and exchange in the human respiratory system, the complicated process of advection and diffusion (AD) in airway...The lung is an important organ that takes part in the gas exchange process. In the study of gas transport and exchange in the human respiratory system, the complicated process of advection and diffusion (AD) in airways of human lungs is considered. The basis of a lumped parameter model or a transport equation is modeled during the inspiration process, when oxygen enters into the human lung channel. The quantitative measurements of oxygen are detached and the model equation is solved numerically by explicit finite difference schemes. Numerical simulations were made for natural breathing conditions or normal breathing conditions. The respiratory flow results for the resting conditions are found strongly dependent on the AD effect with some contribution of the unsteadiness effect. The contour of the flow rate region is labeled and AD effects are compared with the variation of small intervals of time for a constant velocity when breathing is interrupted for a negligible moment.展开更多
China’s unconventional gas fields have a large number of low-productivity and low-efficiency wells, many of whichare located in remote and environmentally harsh mountainous areas. To address the long-term stable prod...China’s unconventional gas fields have a large number of low-productivity and low-efficiency wells, many of whichare located in remote and environmentally harsh mountainous areas. To address the long-term stable productionof these gas wells, plunger-lift technology plays an important role. In order to fully understand and accurately graspthe drainage and gas production mechanisms of plunger-lift, a mechanical model of plunger-liquid column uplift inthe plunger-lift process was established, focusing on conventional plunger-lift systems and representative wellboreconfigurations in the Linxing region. The operating casing pressure of the plunger-lift process and the calculationmethod for the maximum daily fluid production rate based on the work regime with the highest fluid recovery ratewere determined. For the first time, the critical flow rate method was proposed as a constraint for the maximumliquid-carrying capacity of the plunger-lift, and liquid-carrying capacity charts for conventional plunger-lift withdifferent casing sizes were developed. The results showed that for 23/8 casing plunger-lift, with a well depth ofshallower than 808 m, the maximum drainage rate was 33 m3/d;for 27/8 casing plunger-lift, with a well depth ofshallower than 742 m, the maximum drainage rate was 50.15 m3/d;for 31/2 casing plunger-lift, with a well depthof shallower than 560 m, the maximum drainage rate was 75.14 m3/d. This research provides a foundation for thescientific selection of plunger-lift technology and serves as a decision-making reference for developing reasonableplunger-lift work regimes.展开更多
The construction and operation of atmospheric nonthermal plasma jet, ANPJ, are presented in this work as well as the experimental investigations of its electrical parameters, the configuration of plasma jet column and...The construction and operation of atmospheric nonthermal plasma jet, ANPJ, are presented in this work as well as the experimental investigations of its electrical parameters, the configuration of plasma jet column and its temperature. The device is energized by a low-cost Neon power supply of (10 kV, 30 mA, and 20 kHz) and the discharge takes place by using N2 gas with different flow rates from 3 to 25 L/min and input voltage of 6 kV. Diagnostic techniques such as voltage divider, Lissajous figure, image processing and thermometer are used. The electrical characteristics of discharge at different flow rates of N2 gas such as discharge voltage, current, mean power, power efficiency, and mean energy have been studied. The experimental results show that the maximum plasma jet length of 14 mm is detected at flow rate of 12 L/min. The results of plasma jet (heavy particles) temperature along the jet length show that jet plasma has approximately a room temperature at the jet column end. The results of zero flow rate effect on the ANPJ operation show damage in the Teflon insulator and a corrosion in the Aluminum electrodes.展开更多
Hydrogenated microcrystalline silicon (μc-Si:H) films are fabricated by very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) at a silane concentration of 7% and a varying total gas flow ra...Hydrogenated microcrystalline silicon (μc-Si:H) films are fabricated by very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) at a silane concentration of 7% and a varying total gas flow rate (H2+SiH4). Relations between the total gas flow rate and the electrical and structural properties as well as deposition rate of the films are studied. The results indicate that with the total gas flow rate increasing the photosensitivity and deposition rate increase, but the crystalline volume fraction (Xc) and dark conductivity decrease. And the intensity of (220) peak first increases then decreases with the increase of the total gas flow rate. The cause for the changes in the structure and deposition rate of the films with the total gas flow rate is investigated using optical emission spectroscopy (OES).展开更多
A copper vapor laser with active medium length of 60 cm and bore of 16 mm has been operated and optimized using different buffer gases to investigate the effect of the gas flow rates on the output power. It is found t...A copper vapor laser with active medium length of 60 cm and bore of 16 mm has been operated and optimized using different buffer gases to investigate the effect of the gas flow rates on the output power. It is found that there is a special optimum gas flow rate associated with the type of buffer gas.展开更多
This study examined the evolution of morphology and nanostructure of soot particles from the plasma-flame interaction for various gas flow rates.The current study used both optical diagnostic and sampling methods to e...This study examined the evolution of morphology and nanostructure of soot particles from the plasma-flame interaction for various gas flow rates.The current study used both optical diagnostic and sampling methods to explore the soot production and combustion characteristics.Soot particles were characterized at the same positions downstream from the flame zone by thermophoretic sampling and transmission electron microscopy.Moreover,X-ray diffraction analysis,and thermogravimetric analysis were performed to study the nanostructure and oxidation reactivity of soot.A reduction in soot concentration was found with the plasma addition,which illustrated an inhibition effect of plasma on soot emission.The increased gas flow rate promoted soot concentration since a growing number of carbons participated in the combustion process.Depending on the gas flow rate(carbon content)variation and plasma activation,either liquid-like soot material with irregularly shaped protrusions or chain-like structure,or a mixture of both,were generated from the diffusion flames.The soot produced by plasma-flame interaction also demonstrated a high correlation between nanostructure and reactivity.The soot from lower carbon content with plasma activation had a shorter fringe length and larger fringe tortuosity related to higher oxidation reactivity.On the contrary,soot from the highest carbon content without plasma-flame interaction exhibited prevalent fullerene-like nanostructures with evident large or small shells and also had a higher carbonization degree resulting in lower oxidation reactivity.展开更多
The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes o...The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes of experiments conducted using air-water mixtures in a horizontal well.The results show that the configuration with an inclined section is the most susceptible to liquid loading.Laboratory experiments in an inclined pipe were also conducted to analyze the variation of the critical gas flow rate under different angles,pressure and liquid volume(taking the equal liquid volume at inlet and outlet as the criterion for judging on the critical state).According to these results,the related angle of the inclined section ranges from 45°to 60°.Finally,a modified approach based on the Belfroid model has been used to predict the critical gas flow rate for the inclined section.After comparison with field data,this modified model shows an accuracy of 96%,indicating that it has better performances with respect to other models used in the past to predict liquid loading.展开更多
Understanding the fundamcntal relationship betwecn gas dilution rate of a cigarette and key cigarette design parameters is important in the overall control of smoke yield.In this work,an equation was derived to expres...Understanding the fundamcntal relationship betwecn gas dilution rate of a cigarette and key cigarette design parameters is important in the overall control of smoke yield.In this work,an equation was derived to express the total gas dilution with the cigarette rod length,cigarette paper air permeability,and the filter ventilation level.The relationship was validated using experimental results.The accuracy of the developed model was dependent on the regression method used,i.e.,linear or a nonlinear.The expression provides a quantitative description of the interactions between filter ventilation level,cigarette length,cigarette circumference and cigarette paper air permeability and the total air dilution at the cigarette's mouth end.展开更多
The transport behaviour of carrier gases with inorganic catalytic ceramic membrane used for ethyl lactate production and VOC (volatile organic compound) recovery in the gauge pressure range of 0.10-1.00 bar and temp...The transport behaviour of carrier gases with inorganic catalytic ceramic membrane used for ethyl lactate production and VOC (volatile organic compound) recovery in the gauge pressure range of 0.10-1.00 bar and temperature range of 333 K was investigated. The gases include Ar (argon), N2 (nitrogen) and CO2 (carbon dioxide). The gas kinetic diameter with respect to permenace was found to occur in the order of At 〉 CO2 〉 N2, which was not in agreement with molecular sieving mechanism of transport after the first dip-coating of the support. However, gas flow rate was found to increase with gauge pressure in the order of Ar 〉 CO2 〉 N2, indicating Knudsen mechanism of transport. The porous ceramic support showed a higher flux indicating Knudsen transport. The surface image of the dip-coated porous ceramic membrane was characterised using SEM (scanning electron microscopy) to determine the surface morphology of the porous support at 333 K.展开更多
In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre...In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.展开更多
文摘Tight gas reservoirs with mobile water exhibit multi-phase flow and high stress sensitivity.Accurately analyzing the reservoir and well parameters using conventional single-phase rate transient analysis methods proves challenging.This study introduces novel rate transient analysis methods incorporating evaluation processes based on the conventional flowing material balance method and the Blasingame type-curve method to examine fractured gas wells producing water.By positing a gas-water two-phase equivalent homogenous phase that considers characteristics of mobile water,gas,and high stress sensitivity,the conventional single-phase rate transient analysis methods can be applied by integrating the phase's characteristics and defining the phase's normalized parameters and material balance pseudotime.The rate transient analysis methods based on the equivalent homogenous phase can be used to quantitatively assess the parameters of wells and gas reservoirs,such as original gas-in-place,fracture half-length,reservoir permeability,and well drainage radius.This facilitates the analysis of production dynamics of fractured wells and well-controlled areas,subsequently aiding in locating residual gas and guiding the configuration of well patterns.The specific evaluation processes are detailed.Additionally,a numerical simulation mechanism model was constructed to verify the reliability of the developed methods.The methods introduced have been successfully implemented in field water-producing gas wells within tight gas reservoirs containing mobile water.
基金National Natural Science Foundation of China (NO. Z02047)CNPC Program (NO.Z03014).
文摘The Sulige tight gas reservoir is characterized by low-pressure, low-permeability and lowabundance. During production, gas flow rate and reservoir pressure decrease sharply; and in the shut- in period, reservoir pressure builds up slowly. Many conventional methods, such as the indicative curve method, systematic analysis method and numerical simulation, are not applicable to determining an appropriate gas flow rate. Static data and dynamic performance show permeability capacity, kh is the most sensitive factor influencing well productivity, so criteria based on kh were proposed to classify vertical wells. All gas wells were classified into 4 groups. A multi-objective fuzzy optimization method, in which dimensionless gas flow rate, period of stable production, and recovery at the end of the stable production period were selected as optimizing objectives, was established to determine the reasonable range of gas flow rate. In this method, membership functions of above-mentioned optimizing factors and their weights were given. Moreover, to simplify calculation and facilitate field use, a simplified graphical illustration (or correlation) was given for the four classes of wells. Case study illustrates the applicability of the proposed method and graphical correlation, and an increase in cumulative gas production up to 37% is achieved and the well can produce at a constant flow rate for a long time.
基金supported by the Natural Science Foundation of Hebei Province,China(No.A2012205072)
文摘It is known that gas flow rate is a key factor in controlling industrial plasma processing. In this paper, a 2D PIC/MCC model is developed for an rf hollow cathode discharge with an axial nitrogen gas flow. The effects of the gas flow rate on the plasma parameters are calculated and the results show that: with an increasing flow rate, the total ion(N+2, N+) density decreases, the mean sheath thickness becomes wider, the radial electric field in the sheath and the axial electric field show an increase, and the energies of both kinds of nitrogen ions increase;and, as the axial ion current density that is moving toward the ground electrode increases, the ion current density near the ground electrode increases. The simulation results will provide a useful reference for plasma jet technology involving rf hollow cathode discharges in N2.
基金supported by the National Basic Research Program of China (Grant Nos 2006CB202602 and 2006CB202603)the Tianjin Assistant Foundation for the National Basic Research Program of China (Grant No 07QTPTJC29500)the Natural Science Foundation of Tianjin (Grant No 07JCYBJC04000)
文摘This paper reports that high-rate-deposition of microcrystalline silicon solar cells was performed by very-highfrequency plasma-enhanced chemical vapor deposition. These solar cells, whose intrinsic μc-Si:H layers were prepared by using a different total gas flow rate (Ftotal), behave much differently in performance, although their intrinsic layers have similar crystalline volume fraction, opto-electronic properties and a deposition rate of - 1.0 nm/s. The influence of Ftotal on the micro-structural properties was analyzed by Raman and Fourier transformed infrared measurements. The results showed that the vertical uniformity and the compact degree of μc-Si:H thin films were improved with increasing Ftotal. The variation of the microstructure was regarded as the main reason for the difference of the J V parameters. Combined with optical emission spectroscopy, we found that the gas temperature plays an important role in determining the microstructure of thin films. With Ftotal of 300 sccm, a conversion efficiency of 8.11% has been obtained for the intrinsic layer deposited at 8.5 A/s (1 A=0.1 nm).
基金Project(61072101)supported by the National Natural Science Foundation of ChinaProject(15JCYBJC19200)supported by Natural Science Foundation of Tianjin,China
文摘Non-equilibrium vapor condensation of moist gas through a sonic nozzle is a very complicated phenomenon and is related to the measurement accuracy of sonic nozzle.A gas-liquid two-phase model for the moist gas condensation flow was built and validated by moist nitrogen experiment of homogeneous nucleation through a transonic nozzle.The effects of carrier gas pressure on position and status of condensation onset in sonic nozzle were investigated in detail.The results show that condensation process is not easy to occur at lower carrier pressure and throat diameter.The main factors influencing condensation onset are boundary layer thickness,heat capacity of carrier gas and expansion rate.All of results can be used to further analyze the effect of condensation on mass flow-rate of sonic nozzle.
基金supported by National Natural Science Foundation of China(Nos.10805013,11375051)Funds for Distinguished Young Scientists of Hebei Province,China(No.A2012201045)+1 种基金Department of Education for Outstanding Youth Project of China(No.Y2011120)Youth Project of Hebei University of China(No.2011Q14)
文摘A direct current(DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas.Using optical and electrical methods,the discharge characteristics are investigated for the diffuse plasma plume.Results indicate that the discharge has a pulse characteristic,under the excitation of a DC voltage.The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode.It is found that,with an increment of the gas flow rate,both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode,reach their minima at about1.5 L/min,and then slightly increase in the turbulent mode.However,the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min,and then slightly decreases in the turbulent mode.
基金financially supported by the National Natural Science Foundation of China(No.51704062)the Fundamental Research Funds for the Central Universities,China(No.N2025019)。
文摘A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up,and measurements were carried out to validate the mathematical model.The results show that,with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min^(-1),the mixing time predicted by the mathematical model agrees well with the measured values.The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations,where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value.In addition,the circulation flow rate was 9 kg·s^(-1).When the gas blowing nozzle was horizontally rotated by either 30° or 45°,the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle,due to the rotational flow formed in the up-snorkel.Furthermore,the mixing time at the monitoring point 1,2,and 3 was shortened by around 21.3%,28.2%,and 12.3%,respectively.With the nozzle angle of 30° and 45°,the averaged residence time of 128 bubbles in liquid was increased by around 33.3%.
基金support from Subtopics of National Science and Technology Major Project(2011ZX05026-004-03)the National Natural Science Foundation of China (51104167)
文摘The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages in the pipeline occur occasionally. To maintain the natural gas flow in the pipeline, we proposed a method for analyzing blockages and ascribed them to the hydrate formation and agglomeration. A new high-pressure flow loop was developed to investigate hydrate plug formation and hydrate particle size, using a mixture of diesel oil, water, and natural gas as experimental fluids. The influences of pressure and initial flow rate were also studied. Experimental results indicated that when the flow rate was below 850 kg/h, gas hydrates would form and then plug the pipeline, even at a low water content (10%) of a water/oil emulsion. Furthermore, some practical suggestions were made for daily management of the subsea pipeline.
基金supported by National Natural Science Foundation of China(51576174)
文摘The effects of feed gas flow rate and operating current on the electrical characteristics and dynamic behavior of a rotating gliding arc (RGA) plasma codriven by a magnetic field and tangential flow were investigated.The operating current has been shown to significantly affect the time-resolved voltage waveforms of the discharge,particularly at flow rate =21 min^-1.When the current was lower than 140 mA,sinusoidal waveforms with regular variation periods of 13.5-17.0 ms can be observed (flow rate =21 min^-1).The restrike mode characterized by serial sudden drops of voltage appeared under all studied conditions.Increasing the flow rate from 8 to 121 min^-1 (at the same current) led to a shift of arc rotation mode which would then result in a significant drop of discharge voltage (around 120-200 V).For a given flow rate,the reduction of current resulted in a nearly linear increase of voltage.
基金supported by the National Natural Science Foundation of China(Nos.52076212,U1933107)the Training Fund For Blue Sky Young Scholars of Civil Aviation University of ChinaNatural Science Foundation of Ningbo(No.2019A610173).
文摘Based on the three-cathode plasma spraying system,tantalum(Ta)coatings were pre-pared on the substrate of CuCrZr alloy.The effects of different auxiliary gas(helium)flow rates on the microstructure,phase composition,mechanical and wear resistance properties of Ta coatings were studied.The results showed that the oxidation degree of the coatings decreases first and then increases with the increase of the auxiliary gas flow.When the auxiliary gas flow rate is 70 L·min-1,the oxidation degree of the coating is the lowest,minimum value of the porosity is 0.21%,and the bonding strength reaches the maximum,59.3 MPa.At this time,the coating wear rate is 0.0012 mm^(3)·N^(-1)·m^(-1)with the best wear resistance.This indicates that the auxiliary gas flow has an important influence on the quality and surface mechanical properties of tantalum coating.
文摘The lung is an important organ that takes part in the gas exchange process. In the study of gas transport and exchange in the human respiratory system, the complicated process of advection and diffusion (AD) in airways of human lungs is considered. The basis of a lumped parameter model or a transport equation is modeled during the inspiration process, when oxygen enters into the human lung channel. The quantitative measurements of oxygen are detached and the model equation is solved numerically by explicit finite difference schemes. Numerical simulations were made for natural breathing conditions or normal breathing conditions. The respiratory flow results for the resting conditions are found strongly dependent on the AD effect with some contribution of the unsteadiness effect. The contour of the flow rate region is labeled and AD effects are compared with the variation of small intervals of time for a constant velocity when breathing is interrupted for a negligible moment.
基金the Fundamental Research Funds for the Central Universities of China(No.20CX02308A)CNOOC Project(No.ZX2022ZCCYF3835).
文摘China’s unconventional gas fields have a large number of low-productivity and low-efficiency wells, many of whichare located in remote and environmentally harsh mountainous areas. To address the long-term stable productionof these gas wells, plunger-lift technology plays an important role. In order to fully understand and accurately graspthe drainage and gas production mechanisms of plunger-lift, a mechanical model of plunger-liquid column uplift inthe plunger-lift process was established, focusing on conventional plunger-lift systems and representative wellboreconfigurations in the Linxing region. The operating casing pressure of the plunger-lift process and the calculationmethod for the maximum daily fluid production rate based on the work regime with the highest fluid recovery ratewere determined. For the first time, the critical flow rate method was proposed as a constraint for the maximumliquid-carrying capacity of the plunger-lift, and liquid-carrying capacity charts for conventional plunger-lift withdifferent casing sizes were developed. The results showed that for 23/8 casing plunger-lift, with a well depth ofshallower than 808 m, the maximum drainage rate was 33 m3/d;for 27/8 casing plunger-lift, with a well depth ofshallower than 742 m, the maximum drainage rate was 50.15 m3/d;for 31/2 casing plunger-lift, with a well depthof shallower than 560 m, the maximum drainage rate was 75.14 m3/d. This research provides a foundation for thescientific selection of plunger-lift technology and serves as a decision-making reference for developing reasonableplunger-lift work regimes.
文摘The construction and operation of atmospheric nonthermal plasma jet, ANPJ, are presented in this work as well as the experimental investigations of its electrical parameters, the configuration of plasma jet column and its temperature. The device is energized by a low-cost Neon power supply of (10 kV, 30 mA, and 20 kHz) and the discharge takes place by using N2 gas with different flow rates from 3 to 25 L/min and input voltage of 6 kV. Diagnostic techniques such as voltage divider, Lissajous figure, image processing and thermometer are used. The electrical characteristics of discharge at different flow rates of N2 gas such as discharge voltage, current, mean power, power efficiency, and mean energy have been studied. The experimental results show that the maximum plasma jet length of 14 mm is detected at flow rate of 12 L/min. The results of plasma jet (heavy particles) temperature along the jet length show that jet plasma has approximately a room temperature at the jet column end. The results of zero flow rate effect on the ANPJ operation show damage in the Teflon insulator and a corrosion in the Aluminum electrodes.
基金Project supported the Key Project of Tianjin Municipal Science and Technology Commission (Grant No 043186511), the National Natural Science Foundation of China (Grant No 60506003), and the Chinese-Greece International Project,
文摘Hydrogenated microcrystalline silicon (μc-Si:H) films are fabricated by very high frequency plasma enhanced chemical vapour deposition (VHF-PECVD) at a silane concentration of 7% and a varying total gas flow rate (H2+SiH4). Relations between the total gas flow rate and the electrical and structural properties as well as deposition rate of the films are studied. The results indicate that with the total gas flow rate increasing the photosensitivity and deposition rate increase, but the crystalline volume fraction (Xc) and dark conductivity decrease. And the intensity of (220) peak first increases then decreases with the increase of the total gas flow rate. The cause for the changes in the structure and deposition rate of the films with the total gas flow rate is investigated using optical emission spectroscopy (OES).
文摘A copper vapor laser with active medium length of 60 cm and bore of 16 mm has been operated and optimized using different buffer gases to investigate the effect of the gas flow rates on the output power. It is found that there is a special optimum gas flow rate associated with the type of buffer gas.
基金supported by the National Natural Science Foundation of China(Grant Nos.52076110 and 52376115)。
文摘This study examined the evolution of morphology and nanostructure of soot particles from the plasma-flame interaction for various gas flow rates.The current study used both optical diagnostic and sampling methods to explore the soot production and combustion characteristics.Soot particles were characterized at the same positions downstream from the flame zone by thermophoretic sampling and transmission electron microscopy.Moreover,X-ray diffraction analysis,and thermogravimetric analysis were performed to study the nanostructure and oxidation reactivity of soot.A reduction in soot concentration was found with the plasma addition,which illustrated an inhibition effect of plasma on soot emission.The increased gas flow rate promoted soot concentration since a growing number of carbons participated in the combustion process.Depending on the gas flow rate(carbon content)variation and plasma activation,either liquid-like soot material with irregularly shaped protrusions or chain-like structure,or a mixture of both,were generated from the diffusion flames.The soot produced by plasma-flame interaction also demonstrated a high correlation between nanostructure and reactivity.The soot from lower carbon content with plasma activation had a shorter fringe length and larger fringe tortuosity related to higher oxidation reactivity.On the contrary,soot from the highest carbon content without plasma-flame interaction exhibited prevalent fullerene-like nanostructures with evident large or small shells and also had a higher carbonization degree resulting in lower oxidation reactivity.
基金The authors like to express appreciation to the support given by the major national science and technology special project:Research and Application of Key Technologies for Oil Production and Gas Recovery in Complex Carbonate Reservoirs in Central Asia and Middle East(2017ZX05030-005)Scientific Research Startup Fund Project for Introducing Talent of Kunming University of Science and Technology(KKSY20180502).
文摘The ability to predict liquid loading in horizontal gas wells is of great importance for determining the time of drainage and optimizing the related production technology.In the present work,we describe the outcomes of experiments conducted using air-water mixtures in a horizontal well.The results show that the configuration with an inclined section is the most susceptible to liquid loading.Laboratory experiments in an inclined pipe were also conducted to analyze the variation of the critical gas flow rate under different angles,pressure and liquid volume(taking the equal liquid volume at inlet and outlet as the criterion for judging on the critical state).According to these results,the related angle of the inclined section ranges from 45°to 60°.Finally,a modified approach based on the Belfroid model has been used to predict the critical gas flow rate for the inclined section.After comparison with field data,this modified model shows an accuracy of 96%,indicating that it has better performances with respect to other models used in the past to predict liquid loading.
文摘Understanding the fundamcntal relationship betwecn gas dilution rate of a cigarette and key cigarette design parameters is important in the overall control of smoke yield.In this work,an equation was derived to express the total gas dilution with the cigarette rod length,cigarette paper air permeability,and the filter ventilation level.The relationship was validated using experimental results.The accuracy of the developed model was dependent on the regression method used,i.e.,linear or a nonlinear.The expression provides a quantitative description of the interactions between filter ventilation level,cigarette length,cigarette circumference and cigarette paper air permeability and the total air dilution at the cigarette's mouth end.
文摘The transport behaviour of carrier gases with inorganic catalytic ceramic membrane used for ethyl lactate production and VOC (volatile organic compound) recovery in the gauge pressure range of 0.10-1.00 bar and temperature range of 333 K was investigated. The gases include Ar (argon), N2 (nitrogen) and CO2 (carbon dioxide). The gas kinetic diameter with respect to permenace was found to occur in the order of At 〉 CO2 〉 N2, which was not in agreement with molecular sieving mechanism of transport after the first dip-coating of the support. However, gas flow rate was found to increase with gauge pressure in the order of Ar 〉 CO2 〉 N2, indicating Knudsen mechanism of transport. The porous ceramic support showed a higher flux indicating Knudsen transport. The surface image of the dip-coated porous ceramic membrane was characterised using SEM (scanning electron microscopy) to determine the surface morphology of the porous support at 333 K.
文摘In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.