A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the dig...A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.展开更多
A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to exten...A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to extend the MC method to the study of nano-scale semiconductor devices with obvious quantum mechanical (QM) effects. The quantum effects both in real space and momentum space in nano-scale semiconductor devices can be simulated. The effective mobility in the inversion layer of n and p channel MOSFET is simulated and compared with experimental data to verify this method. With this method 50nm ultra thin body silicon on insulator MOSFET are simulated. Results indicate that this method can be used to simulate the 2D QM effects in semiconductor devices including tunnelling effect.展开更多
A finite element model of one-arm planet carrier was built, and influence of structural parameters on strength and stiffness for one-arm planet carrier was analyzed. The stress and deformation of the round structure a...A finite element model of one-arm planet carrier was built, and influence of structural parameters on strength and stiffness for one-arm planet carrier was analyzed. The stress and deformation of the round structure and the triangle structure for one-arm planet carrier were analyzed and compared. The finite element model of the same specifications arms planet carrier was established, and influence of the connecting slab thickness and input side plate thickness on strength and stiffness for arms planet carrier was analyzed. Strength, stiffness and mass for one-arm and arms planet carrier in the same specifications were analyzed and compared.展开更多
La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) perovskite nanoparticles for use as anode material in intermediate temperature solid oxide fuel cells (IT-SOFCs) were synthesized using 3,3’,3”- nitrilotripropionic acid (NTP), cit...La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) perovskite nanoparticles for use as anode material in intermediate temperature solid oxide fuel cells (IT-SOFCs) were synthesized using 3,3’,3”- nitrilotripropionic acid (NTP), citric acid and oxalic acid as carriers via a combustion method. The influence of the carrier on phase and morphology of the obtained pristine products was characterized using X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). XRD results showed, that the LSCM had rhombohedral symmetry with R-3c space group;a single phase LSCM perovskite formed after calcination of fired gel at 1200°C for 7 h. Scanning electron microscopy analysis of the pristine powders showed spherical shape and particle sizes in the range of 50 – 500 nm.展开更多
In this paper, simulation of InAs/GaAs quantum dot (QD) laser is performed based upon a set of eight rate equations for the carriers and photons in five energy states. Carrier dynamics in these lasers were under analy...In this paper, simulation of InAs/GaAs quantum dot (QD) laser is performed based upon a set of eight rate equations for the carriers and photons in five energy states. Carrier dynamics in these lasers were under analysis and the rate equations are solved using 4th order Runge-Kutta method. We have shown that by increasing injected current to the active medium of laser, switching-on and stability time of the system would decrease and power peak and stationary power will be increased. Also, emission in any state will start when the lower state is saturated and remain steady. The results including P-I characteristic curve for the ground state (GS), first excited state (ES1), second excited state (ES2) and output power of the QD laser will be presented.展开更多
A new evanescently-coupled uni-traveling-carrier photodiode (EC-UTC PD) based on a multimode diluted waveguide (MDW) structure is fabricated, analysed and characterized. Optical and electrical characteristics of t...A new evanescently-coupled uni-traveling-carrier photodiode (EC-UTC PD) based on a multimode diluted waveguide (MDW) structure is fabricated, analysed and characterized. Optical and electrical characteristics of the device are investigated. The excellent characteristics are demonstrated such as a responsivity of 0.36 A/W, a bandwidth of 11.5 GHz and a small-signal 1-dB compression current greater than 18 mA at 10 GHz. The saturation current is significantly improved compared with those of similar evanescently-coupled pin photodiodes. The radio frequency (RF) bandwidth can be further improved by eliminating RF losses induced by the cables, the probe and the bias tee between the photodiode and the spectrum analyzer.展开更多
基金supported by the National 863 Program under Grant No. 2007AA03Z415.
文摘A novel fiber Bragg grating (FBG) sensor array system based on digital phase generated carrier (PGC) demodulation and reference compensation method is proposed and set up. Experimental results confirm that the digital PGC demodulation can be used for wavelength-division-multiplexed FBG sensor array and the reference compensation method can reduce the environmental interference by approximately 40 dB in the frequency range from 20 Hz to 2 kHz. The minimum detectable wavelength-shift of the sensor system is 1 × 10^-3 pm/Hz^1/2.
基金Project supported by the Special Foundation for State Major Basic Research Program of China (Grant No G2000035602) and the National Natural Science Foundation of China (Grant No 90307006).
文摘A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to extend the MC method to the study of nano-scale semiconductor devices with obvious quantum mechanical (QM) effects. The quantum effects both in real space and momentum space in nano-scale semiconductor devices can be simulated. The effective mobility in the inversion layer of n and p channel MOSFET is simulated and compared with experimental data to verify this method. With this method 50nm ultra thin body silicon on insulator MOSFET are simulated. Results indicate that this method can be used to simulate the 2D QM effects in semiconductor devices including tunnelling effect.
基金Funded by National Science and Technology Support Program(Grant No.2013BAF01B05)Zhengzhou Science and Technology Project(Grant No.121PZDGG255)
文摘A finite element model of one-arm planet carrier was built, and influence of structural parameters on strength and stiffness for one-arm planet carrier was analyzed. The stress and deformation of the round structure and the triangle structure for one-arm planet carrier were analyzed and compared. The finite element model of the same specifications arms planet carrier was established, and influence of the connecting slab thickness and input side plate thickness on strength and stiffness for arms planet carrier was analyzed. Strength, stiffness and mass for one-arm and arms planet carrier in the same specifications were analyzed and compared.
文摘La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) perovskite nanoparticles for use as anode material in intermediate temperature solid oxide fuel cells (IT-SOFCs) were synthesized using 3,3’,3”- nitrilotripropionic acid (NTP), citric acid and oxalic acid as carriers via a combustion method. The influence of the carrier on phase and morphology of the obtained pristine products was characterized using X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). XRD results showed, that the LSCM had rhombohedral symmetry with R-3c space group;a single phase LSCM perovskite formed after calcination of fired gel at 1200°C for 7 h. Scanning electron microscopy analysis of the pristine powders showed spherical shape and particle sizes in the range of 50 – 500 nm.
文摘In this paper, simulation of InAs/GaAs quantum dot (QD) laser is performed based upon a set of eight rate equations for the carriers and photons in five energy states. Carrier dynamics in these lasers were under analysis and the rate equations are solved using 4th order Runge-Kutta method. We have shown that by increasing injected current to the active medium of laser, switching-on and stability time of the system would decrease and power peak and stationary power will be increased. Also, emission in any state will start when the lower state is saturated and remain steady. The results including P-I characteristic curve for the ground state (GS), first excited state (ES1), second excited state (ES2) and output power of the QD laser will be presented.
基金Project supported by the National High Technology Research and Development of China (Grant Nos 2006AA01Z256,2007AA03Z419 and 2007AA03Z417)the State Key Development Program for Basic Research of China (Grant Nos 2006CB604901 and 2006CB604902)the National Natural Science Foundation of China (Grant Nos 90401025,60736036,60706009 and60777021)
文摘A new evanescently-coupled uni-traveling-carrier photodiode (EC-UTC PD) based on a multimode diluted waveguide (MDW) structure is fabricated, analysed and characterized. Optical and electrical characteristics of the device are investigated. The excellent characteristics are demonstrated such as a responsivity of 0.36 A/W, a bandwidth of 11.5 GHz and a small-signal 1-dB compression current greater than 18 mA at 10 GHz. The saturation current is significantly improved compared with those of similar evanescently-coupled pin photodiodes. The radio frequency (RF) bandwidth can be further improved by eliminating RF losses induced by the cables, the probe and the bias tee between the photodiode and the spectrum analyzer.