Degenerated endplate appears with cheese-like morphology and sensory innervation,contributing to low back pain and subsequently inducing intervertebral disc degeneration in the aged population.1 However,the origin and...Degenerated endplate appears with cheese-like morphology and sensory innervation,contributing to low back pain and subsequently inducing intervertebral disc degeneration in the aged population.1 However,the origin and development mechanism of the cheese-like morphology remain unclear.Here in this study,we report lumbar instability induced cartilage endplate remodeling is responsible for this pathological change.展开更多
Objective Endoscopic tympanoplasty includes various surgical methods,such as internal repair,interlayer repair,and external overlay.This technique requires autologous materials,allografts,and xenografts,which are used...Objective Endoscopic tympanoplasty includes various surgical methods,such as internal repair,interlayer repair,and external overlay.This technique requires autologous materials,allografts,and xenografts,which are used to repair tympanic membrane(TM)perforation.To obtain good results,appropriate surgical methods and repair materials should be selected.This study aims to assess the efficacy of repairing refractory TM perforations in the porcine small intestinal submucosa(SIS)during transcanal endoscopic type I tympanoplasty.Method A retrospective chart review was performed on patients who underwent TM perforation repair with porcine SIS and tragus cartilage between January 2022 and September 2022 at Sir Run Run Shaw Hospital,Zhejiang University School of Medicine.Perforation size,tympanic status,pre-and postoperative symptoms,follow-up data,wound healing rates,and hearing improvement were analysed.Results Of the 115 patients included in the study,56 underwent interlayer repair with porcine SIS of the TM,and 59 patients underwent internal repair with tragus cartilage.No significant difference was found between the two groups at baseline in terms of age,sex,disease course,perforation side,tympanic status,underlying disease,or preoperative infection.The total postoperative effective rate of interlayer implantation with porcine SIS was 91.07%(51 patients),and that of internal implantation with tragus cartilage was 88.14%(52 patients).No significant difference was found in terms of the graft success rate between the two surgical methods(p=0.887).Postoperative pure tone auditory(PTA)and air-bone gap(ABG)density significantly increased in both groups compared with before surgery(p<0.05).However,the postoperative PTA and ABG density were not significantly different 3 months post-surgery between the two groups(p>0.05).Compared to those in the internal implantation group,the patients in the interlayer group had a shorter operation duration(51.36±6.76 min vs.59.71±7.45 min,t=6.298,p<0.001)and less blood loss(11.91±2.61 mL vs.15.27±2.57 mL,t=7.019,p<0.001).Conclusions Our study suggests that the porcine SIS,as well as the tragus cartilage,has a high success rate in repairing irreversible TM perforation.Endoscopic tympanoplasty via interlayer implantation with porcine SIS offers distinct advantages,including the absence of donor-site incision and scar formation,and ease of graft modification and manipulation.展开更多
BACKGROUND This case report highlights a rare instance of concurrent keloid and epidermal cyst development at an ear cartilage harvest site following rhinoplasty in a 25-year-old woman.Both conditions,which typically ...BACKGROUND This case report highlights a rare instance of concurrent keloid and epidermal cyst development at an ear cartilage harvest site following rhinoplasty in a 25-year-old woman.Both conditions,which typically stem from skin trauma,seldom occur together,demonstrating the exceptional characteristics of this case.CASE SUMMARY The patient underwent successful surgical removal of both the keloid and the epidermal cyst.Postoperative treatment included the use of silicone sheets,gel,and oral tranilast to reduce scarring.No recurrence was observed over a 6-mo follow-up period,indicating effective management of the condition.CONCLUSION The effective management of complex skin trauma cases underscores the need for individualized treatment strategies in plastic surgery.展开更多
Background:Autologous costal grafts are used universally in clinical practice for rhinoplasty and reconstruction.However,surgeons worldwide have not agreed on the details of graft harvesting,including rib selection,si...Background:Autologous costal grafts are used universally in clinical practice for rhinoplasty and reconstruction.However,surgeons worldwide have not agreed on the details of graft harvesting,including rib selection,side preference,operation mode,cutting methods,and handling of the periosteum and perichondrium.This study aimed to provide an overview of the novel techniques used for auto-rib harvesting in rhinoplasty within the past 5 years and identify potential avenues for future research.Methods:We searched for related articles in PubMed,Embase,and Web of Science from 2019 to 2023,summa-rized crucial but controversial steps in recent practice,and analyzed their theoretical basis and clinical feasibility.Results:Auto-rib and cartilage open harvest is still mainstream in rhinoplasty and reconstruction,with the 5th to 8th ribs and cartilage being the most used.The laparoscopic harvest is gaining attention,being second only to the open harvest,with the 9th/10th ribs and cartilages being particularly convenient.The clinical applications of full-cut and split-cut methods differ in their advantages.Except for some special reasons,almost all studies tended to preserve the periosteum and perichondrium in situ,and few surgeons chose to harvest the grafts on the left side.Conclusion:Multiple techniques have emerged,requiring surgeons to balance the benefits and risks of various strategies at each step.New theories and techniques should be fully tested promptly and in clinical practice before wide application.Overall,a professional consensus is needed for better directivity,precision,and stability in clinical practice.展开更多
BACKGROUND Due to frequent and high-risk sports activities,the elbow joint is susceptible to injury,especially to cartilage tissue,which can cause pain,limited movement and even loss of joint function.AIM To evaluate ...BACKGROUND Due to frequent and high-risk sports activities,the elbow joint is susceptible to injury,especially to cartilage tissue,which can cause pain,limited movement and even loss of joint function.AIM To evaluate magnetic resonance imaging(MRI)multisequence imaging for improving the diagnostic accuracy of adult elbow cartilage injury.METHODS A total of 60 patients diagnosed with elbow cartilage injury in our hospital from January 2020 to December 2021 were enrolled in this retrospective study.We analyzed the accuracy of conventional MRI sequences(T1-weighted imaging,T2-weighted imaging,proton density weighted imaging,and T2 star weighted image)and Three-Dimensional Coronary Imaging by Spiral Scanning(3D-CISS)in the diagnosis of elbow cartilage injury.Arthroscopy was used as the gold standard to evaluate the diagnostic effect of single and combination sequences in different injury degrees and the consistency with arthroscopy.RESULTS The diagnostic accuracy of 3D-CISS sequence was 89.34%±4.98%,the sensitivity was 90%,and the specificity was 88.33%,which showed the best performance among all sequences(P<0.05).The combined application of the whole sequence had the highest accuracy in all sequence combinations,the accuracy of mild injury was 91.30%,the accuracy of moderate injury was 96.15%,and the accuracy of severe injury was 93.33%(P<0.05).Compared with arthroscopy,the combination of all MRI sequences had the highest consistency of 91.67%,and the kappa value reached 0.890(P<0.001).CONCLUSION Combination of 3D-CISS and each sequence had significant advantages in improving MRI diagnostic accuracy of elbow cartilage injuries in adults.Multisequence MRI is recommended to ensure the best diagnosis and treatment.展开更多
BACKGROUND Endoscopic ear surgery(EES)provides a magnified,high-definition view of the otological surgical field.EES allows otologists to avoid surgical incisions and associated postoperative complications.It is an id...BACKGROUND Endoscopic ear surgery(EES)provides a magnified,high-definition view of the otological surgical field.EES allows otologists to avoid surgical incisions and associated postoperative complications.It is an ideal technique for the perfor-mance and teaching of tympanoplasty.AIM To examine the efficacy of total Endoscopic Push Through Tragal Cartilage Tympanoplasty(EPTTCT),at our institution over a 10-year period.METHODS A retrospective analysis of 168 cases of EPTTCT for closure of small to medium tympanic membrane perforations from 2013-2023 was conducted.Patient sex,age range(pediatric vs adult),etiology of injury,success rate,complications,and postoperative hearing status were collected.RESULTS Graft uptake results indicated success in 94%of patients,with less than a 2%complication rate.Postoperative pure tone audiometry demonstrated hearing status improvement in 69%of patients.CONCLUSION EPTTCT has been shown to be effective in tympanic membrane perforation closures with minimal complications.This study further demonstrates the efficacy and safety of these procedures in a single-center review.展开更多
Objectives: The objective of this study is to evaluate donor-site morbidity after costal cartilage harvest for microtia reconstruction. Methods: A total of 70 patients who underwent autologous costal cartilage harvest...Objectives: The objective of this study is to evaluate donor-site morbidity after costal cartilage harvest for microtia reconstruction. Methods: A total of 70 patients who underwent autologous costal cartilage harvest for microtia reconstruction from March 2008-March 2009 were included. Anterior chest wall deformity was evaluated with chest topography, and scar quality at baseline and at 6-months follow-up, and final outcomes analyzed with SPSS. Results: In 70 patients, 52 (74%) were male, 18 (26%) were female, and altogether 40 (57%) patients developed deformity. At 6-month follow-up, the incidence of anterior chest wall deformity was highest at 80% in Block-III, and least at 0% in Block-I. The 6 - 10 years age group was the largest group at 84% (21), and also with highest incidence of deformity in association to Block-IV harvest at 83%. The incidence of donor-site deformity was higher in female gender at 66%, and 54% in males. But in the sub-group, male had higher incidence of deformity at 75% in both Block-III, and Block-IV when compared to the respective females. The 120 - 135 cm height group had the highest deformity at 67% with Block-IV costal cartilages harvested. At the three measurement points: 1) xiphisternum, 2) intersecting points between PSL and LCM, and 3) intersecting points between MCL and LCM, significant differences (mean) were observed in chest circumference from baseline to 6-month follow-up, and between the left and right chest hemi-circumference (postoperatively). Acceptable donor-site scar was observed in all but 3% (2) developed hypertrophic scar. Conclusion: The development of chest wall deformity was observed when more than one costal cartilage was harvested, particularly the 6th (complete), 7th, 8th block. Therefore, to minimize the deformity, we recommend harvesting only the necessary amount of cartilage, and at the lowest level possible to avoid injury of costochondral junction. Additionally, age, height, gender and chest development are equally important factors which influence donor-site deformity in microtia reconstruction.展开更多
The relentless pain and disability caused by osteoarthritis stem from the body’s own cartilage cells going rogue under inflammatory conditions.They secrete enzymes that devour the cushioning cartilage matrix,leading ...The relentless pain and disability caused by osteoarthritis stem from the body’s own cartilage cells going rogue under inflammatory conditions.They secrete enzymes that devour the cushioning cartilage matrix,leading to joint damage.Conventional drugs cannot effectively reach this inflammatory source within the dense cartilage.展开更多
Articular cartilage(AC)is an avascular and flexible connective tissue located on the bone surface in the diarthrodial joints.AC defects are common in the knees of young and physically active individuals.Because of the...Articular cartilage(AC)is an avascular and flexible connective tissue located on the bone surface in the diarthrodial joints.AC defects are common in the knees of young and physically active individuals.Because of the lack of suitable tissue-engineered artificial matrices,current therapies for AC defects,espe-cially full-thickness AC defects and osteochondral interfaces,fail to replace or regenerate damaged carti-lage adequately.With rapid research and development advancements in AC tissue engineering(ACTE),functionalized hydrogels have emerged as promising cartilage matrix substitutes because of their favor-able biomechanical properties,water content,swelling ability,cytocompatibility,biodegradability,and lubricating behaviors.They can be rationally designed and conveniently tuned to simulate the extracel-lular matrix of cartilage.This article briefly introduces the composition,structure,and function of AC and its defects,followed by a comprehensive review of the exquisite(bio)design and(bio)fabrication of func-tionalized hydrogels for AC repair.Finally,we summarize the challenges encountered in functionalized hydrogel-based strategies for ACTE both in vivo and in vitro and the future directions for clinical translation.展开更多
For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure ...For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the micro- structure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified car- tilage and subchondral bone are in the manner of"protrusion-pore" with average diameter of 17.0 gm and 34.1 lam respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.展开更多
Objective:To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of mini...Objective:To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of minipigs was taken out and the bone marrow derived mesenchymal stem cells (BMSCs) were isolated and cultured to passage 3. Then 6 minipigs were randomly divided into 2 groups with 6 knees in each group. After the articular cartilage defect was induced in each knee, the left defect received microfracture surgery and was injected with 2.5 ml BMSCs cells at a concentration of 3×107 cells/ml into the articular cavity; while right knee got single microfracture or served as blank control group. The animals were killed at 8 or 16 weeks, and the repair tissue was histologically and immunohistochemically examined for the presence of type Ⅱ collagen and glycosaminoglycans (GAGs) at 8 and 16 weeks. Results: Eight weeks after the surgery, the overlying articular surface of the cartilage defect showed normal color and integrated to adjacent cartilage. And 16 weeks after surgery, hyaline cartilage was observed at the repairing tissues and immunostaining indicated the diffuse presence of this type Ⅱ collagen and GAGs throughout the repair cartilage in the treated defects. Single microfracture group had the repairing of fibrocartilage, while during the treatment, the defects of blank group were covered with fewer fiber tissues, and no blood capillary growth or any immunological rejection was observed. Conclusion: Microfracture technique and BMSCs transplantation to repair cartilage defect is characterized with minimal invasion and easy operation, and it will greatly promote the regeneration repair of articular cartilage defect.展开更多
As the main regulator of cartilage development, Sox9 gene can initiate transcription and expression of various enzymes and protein genes required for car- tilage growth and development. During this process, the expres...As the main regulator of cartilage development, Sox9 gene can initiate transcription and expression of various enzymes and protein genes required for car- tilage growth and development. During this process, the expression and function of Sex9 are also regulated by a variety of factors and signaling pathways. More re- search is concerned about the positive regulation. At present, some studies dis- closed that negative regulation of Sox9 expression existed unique mechanisms. This study will discuss and summarize the negative regulatory mechanism of Sox9 gene by microRNA, NF-κB, Wnt, Notch and other factors and signaling pathways, in or- der to provide the basic framework for further investigating the expression and func- tion of Sox9 in cartilage development.展开更多
This study is designed to determine whether the outermost layer of articular cartilage is deficient in Osteoarthritis (OA). Phospholipids present in healthy and osteoarthritis (OA) synovial fluid show significant diff...This study is designed to determine whether the outermost layer of articular cartilage is deficient in Osteoarthritis (OA). Phospholipids present in healthy and osteoarthritis (OA) synovial fluid show significant differences in their concentration. While examining the surface properties of OA joints, we found that OA PLs molecules cannot support lubrication, and increased friction was observed. Our lubrication mechanism was based on a surface active phospholipids (SAPL) multibilayer which in OA condition was deactivated and removed from the cartilage surface under OA conditions. Cartilage wettability study clearly demonstrated a significant decrease in hydrophobicity, the contact angle, θ (theta), dropping from 103° from bovine healthy cartilage to 65° in surface partially depleted and 35.1° for completely depleted surface. These results are discussed in the context that surface active phospholipid (SAPL) and lubricin, each has specific roles in a lamellar-repulsive lubrication system. However, deactivated phospholipid molecules are major indicator of cartilage wear (model) introduced in this study.展开更多
Objective: This article is a critical review of the literature concerning thyroid cartilage chondrosarcoma and is particularly focused on the management and prognosis of this rare entity. Study Design: A review of all...Objective: This article is a critical review of the literature concerning thyroid cartilage chondrosarcoma and is particularly focused on the management and prognosis of this rare entity. Study Design: A review of all the cases of thyroid cartilage chondrosarcoma reported in the literature up to January 2013. Methods: The search was carried out through the introduction of the MeSH terms: Chondrosarcoma, Laryngeal Cartilages, Thyroid Cartilage, Therapeutics. All the studies related to thyroid cartilage chondrosarcoma were selected together with a newly presented case. Results: A total of 47 cases have been described in the literature, and 35 of these include sufficient data for statistical analysis. The age of patients ranged from 40 to 77 years, with a male predilection (88.6%). The main symptoms were neck mass and hoarseness. Grade I and II tumors were most frequent. A total of 13 cases described an extension of the tumor beyond the thyroid cartilage. The most common treatment was partial laryngectomy (50%). All patients who died were male, with grade II or II-III tumor or associated sarcoma, had metastases and received radiotherapy in addition to total laryngectomy. Conclusion: Patient age and tumor size does not influence the prognosis. Tumor grade I and I-II have good prognoses, whereas the prognosis is unpredictable in tumors between grade II and III. Patients with associated sarcoma, or metastasis, have a worse prognosis. Partial laryngectomy is a good therapeutic option, although total laryngectomy is sometimes required in order to ensure complete resection.展开更多
Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for u...Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix(ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed.展开更多
The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively partici...The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell(MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted celltype lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair.展开更多
Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimul...Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is as-sociated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechani-cal properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical pro-cedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morpho-logical features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells(MSCs) to be an appropriate cellular mate-rial for articular cartilage repair. These cells were origi-nally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic dif-ferentiation is an inherent property of MSCs noticedat the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative proper-ties. Moreover, these cells possess a considerable im-munomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review.展开更多
Bone defects caused by trauma,tumour resection,infection and congenital deformities,together with articular cartilage defects and cartilage–subchondral bone complex defects caused by trauma and degenerative diseases,...Bone defects caused by trauma,tumour resection,infection and congenital deformities,together with articular cartilage defects and cartilage–subchondral bone complex defects caused by trauma and degenerative diseases,remain great challenges for clinicians.Novel strategies utilising cell sheet technology to enhance bone and cartilage regeneration are being developed.The cell sheet technology has shown great clinical potential in regenerative medicine due to its effective preservation of cell–cell connections and extracellular matrix and its scaffold-free nature.This review will first introduce several widely used cell sheet preparation systems,including traditional approaches and recent improvements,as well as their advantages and shortcomings.Recent advances in utilising cell sheet technology to regenerate bone or cartilage defects and bone–cartilage complex defects will be reviewed.The key challenges and future research directions for the application of cell sheet technology in bone and cartilage regeneration will also be discussed.展开更多
Osteoarthritis is the most prevalent chronic and debilitating joint disease,resulting in huge medical and socioeconomic burdens.Intra-articular administration of agents is clinically used for pain management.However,t...Osteoarthritis is the most prevalent chronic and debilitating joint disease,resulting in huge medical and socioeconomic burdens.Intra-articular administration of agents is clinically used for pain management.However,the effectiveness is inapparent caused by the rapid clearance of agents.To overcome this issue,nanoparticles as delivery systems hold considerable promise for local control of the pharmacokinetics of therapeutic agents.Given the therapeutic programs are inseparable from pathological progress of osteoarthritis,an ideal delivery system should allow the release of therapeutic agents upon specific features of disorders.In this review,we firstly introduce the pathological features of osteoarthritis and the design concept for accurate localization within cartilage for sustained drug release.Then,we review the interactions of nanoparticles with cartilage microenvironment and the rational design.Furthermore,we highlight advances in the therapeutic schemes according to the pathology signals.Finally,armed with an updated understanding of the pathological mechanisms,we place an emphasis on the development of“smart”bioresponsive and multiple modality nanoparticles on the near horizon to interact with the pathological signals.We anticipate that the exploration of nanoparticles by balancing the efficacy,safety,and complexity will lay down a solid foundation tangible for clinical translation.展开更多
Symptomatic chondral or osteochondral defects of the talus reduce the quality of life of many patients.Although their pathomechanism is well understood,it is well known that different aetiologic factors play a role in...Symptomatic chondral or osteochondral defects of the talus reduce the quality of life of many patients.Although their pathomechanism is well understood,it is well known that different aetiologic factors play a role in their origin.Additionally,it is well recognised that the talar articular cartilage strongly differs from that in the knee.Despite this fact,many recommendations for the management of talar cartilage defects are based on approaches that were developed for the knee.Conservative treatment seems to work best in paediatric and adolescent patients with osteochondritis dissecans.However,depending on the size of the lesions,surgical approaches are necessary to treat many of these defects.Bone marrow stimulation techniques may achieve good results in small lesions.Large lesions may be treated by open procedures such as osteochondral autograft transfer or allograft transplantation.Autologous chondrocyte transplantation,as a restorative procedure,is well investigated in the knee and has been applied in the talus with increasing popularity and promising results but the evidence to date is poor.The goals of the current article are to summarise the different options for treating chondral and osteochondral defects of the talus and review the available literature.展开更多
基金supported by National Natural Science Foundation of China (82172468,82372436 and 32301416)Natural Science Foundation of Jiangsu Province (BK20211326)Natural Science Fund for Colleges and Universities in Jiangsu Province (21KJB320009)。
文摘Degenerated endplate appears with cheese-like morphology and sensory innervation,contributing to low back pain and subsequently inducing intervertebral disc degeneration in the aged population.1 However,the origin and development mechanism of the cheese-like morphology remain unclear.Here in this study,we report lumbar instability induced cartilage endplate remodeling is responsible for this pathological change.
基金approved by the Ethical Committee for Human Subjects at Sir Run Run Shaw Hospital,Zhejiang University School of Medicine(20240276).All participants or their guardians provided written consent for their medical information to be used for publication.
文摘Objective Endoscopic tympanoplasty includes various surgical methods,such as internal repair,interlayer repair,and external overlay.This technique requires autologous materials,allografts,and xenografts,which are used to repair tympanic membrane(TM)perforation.To obtain good results,appropriate surgical methods and repair materials should be selected.This study aims to assess the efficacy of repairing refractory TM perforations in the porcine small intestinal submucosa(SIS)during transcanal endoscopic type I tympanoplasty.Method A retrospective chart review was performed on patients who underwent TM perforation repair with porcine SIS and tragus cartilage between January 2022 and September 2022 at Sir Run Run Shaw Hospital,Zhejiang University School of Medicine.Perforation size,tympanic status,pre-and postoperative symptoms,follow-up data,wound healing rates,and hearing improvement were analysed.Results Of the 115 patients included in the study,56 underwent interlayer repair with porcine SIS of the TM,and 59 patients underwent internal repair with tragus cartilage.No significant difference was found between the two groups at baseline in terms of age,sex,disease course,perforation side,tympanic status,underlying disease,or preoperative infection.The total postoperative effective rate of interlayer implantation with porcine SIS was 91.07%(51 patients),and that of internal implantation with tragus cartilage was 88.14%(52 patients).No significant difference was found in terms of the graft success rate between the two surgical methods(p=0.887).Postoperative pure tone auditory(PTA)and air-bone gap(ABG)density significantly increased in both groups compared with before surgery(p<0.05).However,the postoperative PTA and ABG density were not significantly different 3 months post-surgery between the two groups(p>0.05).Compared to those in the internal implantation group,the patients in the interlayer group had a shorter operation duration(51.36±6.76 min vs.59.71±7.45 min,t=6.298,p<0.001)and less blood loss(11.91±2.61 mL vs.15.27±2.57 mL,t=7.019,p<0.001).Conclusions Our study suggests that the porcine SIS,as well as the tragus cartilage,has a high success rate in repairing irreversible TM perforation.Endoscopic tympanoplasty via interlayer implantation with porcine SIS offers distinct advantages,including the absence of donor-site incision and scar formation,and ease of graft modification and manipulation.
文摘BACKGROUND This case report highlights a rare instance of concurrent keloid and epidermal cyst development at an ear cartilage harvest site following rhinoplasty in a 25-year-old woman.Both conditions,which typically stem from skin trauma,seldom occur together,demonstrating the exceptional characteristics of this case.CASE SUMMARY The patient underwent successful surgical removal of both the keloid and the epidermal cyst.Postoperative treatment included the use of silicone sheets,gel,and oral tranilast to reduce scarring.No recurrence was observed over a 6-mo follow-up period,indicating effective management of the condition.CONCLUSION The effective management of complex skin trauma cases underscores the need for individualized treatment strategies in plastic surgery.
文摘Background:Autologous costal grafts are used universally in clinical practice for rhinoplasty and reconstruction.However,surgeons worldwide have not agreed on the details of graft harvesting,including rib selection,side preference,operation mode,cutting methods,and handling of the periosteum and perichondrium.This study aimed to provide an overview of the novel techniques used for auto-rib harvesting in rhinoplasty within the past 5 years and identify potential avenues for future research.Methods:We searched for related articles in PubMed,Embase,and Web of Science from 2019 to 2023,summa-rized crucial but controversial steps in recent practice,and analyzed their theoretical basis and clinical feasibility.Results:Auto-rib and cartilage open harvest is still mainstream in rhinoplasty and reconstruction,with the 5th to 8th ribs and cartilage being the most used.The laparoscopic harvest is gaining attention,being second only to the open harvest,with the 9th/10th ribs and cartilages being particularly convenient.The clinical applications of full-cut and split-cut methods differ in their advantages.Except for some special reasons,almost all studies tended to preserve the periosteum and perichondrium in situ,and few surgeons chose to harvest the grafts on the left side.Conclusion:Multiple techniques have emerged,requiring surgeons to balance the benefits and risks of various strategies at each step.New theories and techniques should be fully tested promptly and in clinical practice before wide application.Overall,a professional consensus is needed for better directivity,precision,and stability in clinical practice.
文摘BACKGROUND Due to frequent and high-risk sports activities,the elbow joint is susceptible to injury,especially to cartilage tissue,which can cause pain,limited movement and even loss of joint function.AIM To evaluate magnetic resonance imaging(MRI)multisequence imaging for improving the diagnostic accuracy of adult elbow cartilage injury.METHODS A total of 60 patients diagnosed with elbow cartilage injury in our hospital from January 2020 to December 2021 were enrolled in this retrospective study.We analyzed the accuracy of conventional MRI sequences(T1-weighted imaging,T2-weighted imaging,proton density weighted imaging,and T2 star weighted image)and Three-Dimensional Coronary Imaging by Spiral Scanning(3D-CISS)in the diagnosis of elbow cartilage injury.Arthroscopy was used as the gold standard to evaluate the diagnostic effect of single and combination sequences in different injury degrees and the consistency with arthroscopy.RESULTS The diagnostic accuracy of 3D-CISS sequence was 89.34%±4.98%,the sensitivity was 90%,and the specificity was 88.33%,which showed the best performance among all sequences(P<0.05).The combined application of the whole sequence had the highest accuracy in all sequence combinations,the accuracy of mild injury was 91.30%,the accuracy of moderate injury was 96.15%,and the accuracy of severe injury was 93.33%(P<0.05).Compared with arthroscopy,the combination of all MRI sequences had the highest consistency of 91.67%,and the kappa value reached 0.890(P<0.001).CONCLUSION Combination of 3D-CISS and each sequence had significant advantages in improving MRI diagnostic accuracy of elbow cartilage injuries in adults.Multisequence MRI is recommended to ensure the best diagnosis and treatment.
文摘BACKGROUND Endoscopic ear surgery(EES)provides a magnified,high-definition view of the otological surgical field.EES allows otologists to avoid surgical incisions and associated postoperative complications.It is an ideal technique for the perfor-mance and teaching of tympanoplasty.AIM To examine the efficacy of total Endoscopic Push Through Tragal Cartilage Tympanoplasty(EPTTCT),at our institution over a 10-year period.METHODS A retrospective analysis of 168 cases of EPTTCT for closure of small to medium tympanic membrane perforations from 2013-2023 was conducted.Patient sex,age range(pediatric vs adult),etiology of injury,success rate,complications,and postoperative hearing status were collected.RESULTS Graft uptake results indicated success in 94%of patients,with less than a 2%complication rate.Postoperative pure tone audiometry demonstrated hearing status improvement in 69%of patients.CONCLUSION EPTTCT has been shown to be effective in tympanic membrane perforation closures with minimal complications.This study further demonstrates the efficacy and safety of these procedures in a single-center review.
文摘Objectives: The objective of this study is to evaluate donor-site morbidity after costal cartilage harvest for microtia reconstruction. Methods: A total of 70 patients who underwent autologous costal cartilage harvest for microtia reconstruction from March 2008-March 2009 were included. Anterior chest wall deformity was evaluated with chest topography, and scar quality at baseline and at 6-months follow-up, and final outcomes analyzed with SPSS. Results: In 70 patients, 52 (74%) were male, 18 (26%) were female, and altogether 40 (57%) patients developed deformity. At 6-month follow-up, the incidence of anterior chest wall deformity was highest at 80% in Block-III, and least at 0% in Block-I. The 6 - 10 years age group was the largest group at 84% (21), and also with highest incidence of deformity in association to Block-IV harvest at 83%. The incidence of donor-site deformity was higher in female gender at 66%, and 54% in males. But in the sub-group, male had higher incidence of deformity at 75% in both Block-III, and Block-IV when compared to the respective females. The 120 - 135 cm height group had the highest deformity at 67% with Block-IV costal cartilages harvested. At the three measurement points: 1) xiphisternum, 2) intersecting points between PSL and LCM, and 3) intersecting points between MCL and LCM, significant differences (mean) were observed in chest circumference from baseline to 6-month follow-up, and between the left and right chest hemi-circumference (postoperatively). Acceptable donor-site scar was observed in all but 3% (2) developed hypertrophic scar. Conclusion: The development of chest wall deformity was observed when more than one costal cartilage was harvested, particularly the 6th (complete), 7th, 8th block. Therefore, to minimize the deformity, we recommend harvesting only the necessary amount of cartilage, and at the lowest level possible to avoid injury of costochondral junction. Additionally, age, height, gender and chest development are equally important factors which influence donor-site deformity in microtia reconstruction.
文摘The relentless pain and disability caused by osteoarthritis stem from the body’s own cartilage cells going rogue under inflammatory conditions.They secrete enzymes that devour the cushioning cartilage matrix,leading to joint damage.Conventional drugs cannot effectively reach this inflammatory source within the dense cartilage.
基金supported by grants from the AO Foundation (AOOCD Consortium TA1711481)Areas of Excellence Scheme from the University Grant Council of Hong Kong (Ao E/M-402/20)+1 种基金Theme-based Research Scheme from the University Grant Council of Hong Kong (T13-402/17-N)Key-Area Research and Development Program of Guangdong Province (2019B010941001)
文摘Articular cartilage(AC)is an avascular and flexible connective tissue located on the bone surface in the diarthrodial joints.AC defects are common in the knees of young and physically active individuals.Because of the lack of suitable tissue-engineered artificial matrices,current therapies for AC defects,espe-cially full-thickness AC defects and osteochondral interfaces,fail to replace or regenerate damaged carti-lage adequately.With rapid research and development advancements in AC tissue engineering(ACTE),functionalized hydrogels have emerged as promising cartilage matrix substitutes because of their favor-able biomechanical properties,water content,swelling ability,cytocompatibility,biodegradability,and lubricating behaviors.They can be rationally designed and conveniently tuned to simulate the extracel-lular matrix of cartilage.This article briefly introduces the composition,structure,and function of AC and its defects,followed by a comprehensive review of the exquisite(bio)design and(bio)fabrication of func-tionalized hydrogels for AC repair.Finally,we summarize the challenges encountered in functionalized hydrogel-based strategies for ACTE both in vivo and in vitro and the future directions for clinical translation.
基金This paper was supported by the National Natural Science Foundation of China (Grant No: 50875201) and the National Hi-Tech Program of China (Grant No: 2009AA043801). The authors thank Professor Yiping Tang from Xi'an Jiaotong University for improving the manuscript.
文摘For improving the theory of gradient microstructure of cartilage/bone interface, human distal femurs were studied. Scanning Electron Microscope (SEM), histological sections and MicroCT were used to observe, measure and model the micro- structure of cartilage/bone interface. The results showed that the cartilage/bone interface is in a hierarchical structure which is composed of four different tissue layers. The interlocking of hyaline cartilage and calcified cartilage and that of calcified car- tilage and subchondral bone are in the manner of"protrusion-pore" with average diameter of 17.0 gm and 34.1 lam respectively. In addition, the cancellous bone under the cartilage is also formed by four layer hierarchical structure, and the adjacent layers are connected by bone trabecula in the shape of H, I and Y, forming a complex interwoven network structure. Finally, the simplified structure model of the cartilage/bone interface was proposed according to the natural articular cartilage/bone interface. The simplified model is a 4-layer gradient biomimetic structure, which corresponds to four different tissues of natural cartilage/bone interface. The results of this work would be beneficial to the design of bionic scaffold for the tissue engineering of articular cartilage/bone.
基金Supported by the National Natural Science Foundation ofChina (No. 30070224)the Key Project of the ScientificResearch Foundation for Medical Science and Public Healthof PLA(No. 01Z072)
文摘Objective:To investigate the feasibility of minimal invasive repair of cartilage defect by arthroscope-aided microfracture surgery and autologous transplantation of mesenchymal stem cells. Methods: Bone marrow of minipigs was taken out and the bone marrow derived mesenchymal stem cells (BMSCs) were isolated and cultured to passage 3. Then 6 minipigs were randomly divided into 2 groups with 6 knees in each group. After the articular cartilage defect was induced in each knee, the left defect received microfracture surgery and was injected with 2.5 ml BMSCs cells at a concentration of 3×107 cells/ml into the articular cavity; while right knee got single microfracture or served as blank control group. The animals were killed at 8 or 16 weeks, and the repair tissue was histologically and immunohistochemically examined for the presence of type Ⅱ collagen and glycosaminoglycans (GAGs) at 8 and 16 weeks. Results: Eight weeks after the surgery, the overlying articular surface of the cartilage defect showed normal color and integrated to adjacent cartilage. And 16 weeks after surgery, hyaline cartilage was observed at the repairing tissues and immunostaining indicated the diffuse presence of this type Ⅱ collagen and GAGs throughout the repair cartilage in the treated defects. Single microfracture group had the repairing of fibrocartilage, while during the treatment, the defects of blank group were covered with fewer fiber tissues, and no blood capillary growth or any immunological rejection was observed. Conclusion: Microfracture technique and BMSCs transplantation to repair cartilage defect is characterized with minimal invasion and easy operation, and it will greatly promote the regeneration repair of articular cartilage defect.
基金Supported by National Natural Science Foundation(31671283)Fundamental Research Fund for the Central Universities(2572014EA05)~~
文摘As the main regulator of cartilage development, Sox9 gene can initiate transcription and expression of various enzymes and protein genes required for car- tilage growth and development. During this process, the expression and function of Sex9 are also regulated by a variety of factors and signaling pathways. More re- search is concerned about the positive regulation. At present, some studies dis- closed that negative regulation of Sox9 expression existed unique mechanisms. This study will discuss and summarize the negative regulatory mechanism of Sox9 gene by microRNA, NF-κB, Wnt, Notch and other factors and signaling pathways, in or- der to provide the basic framework for further investigating the expression and func- tion of Sox9 in cartilage development.
文摘This study is designed to determine whether the outermost layer of articular cartilage is deficient in Osteoarthritis (OA). Phospholipids present in healthy and osteoarthritis (OA) synovial fluid show significant differences in their concentration. While examining the surface properties of OA joints, we found that OA PLs molecules cannot support lubrication, and increased friction was observed. Our lubrication mechanism was based on a surface active phospholipids (SAPL) multibilayer which in OA condition was deactivated and removed from the cartilage surface under OA conditions. Cartilage wettability study clearly demonstrated a significant decrease in hydrophobicity, the contact angle, θ (theta), dropping from 103° from bovine healthy cartilage to 65° in surface partially depleted and 35.1° for completely depleted surface. These results are discussed in the context that surface active phospholipid (SAPL) and lubricin, each has specific roles in a lamellar-repulsive lubrication system. However, deactivated phospholipid molecules are major indicator of cartilage wear (model) introduced in this study.
文摘Objective: This article is a critical review of the literature concerning thyroid cartilage chondrosarcoma and is particularly focused on the management and prognosis of this rare entity. Study Design: A review of all the cases of thyroid cartilage chondrosarcoma reported in the literature up to January 2013. Methods: The search was carried out through the introduction of the MeSH terms: Chondrosarcoma, Laryngeal Cartilages, Thyroid Cartilage, Therapeutics. All the studies related to thyroid cartilage chondrosarcoma were selected together with a newly presented case. Results: A total of 47 cases have been described in the literature, and 35 of these include sufficient data for statistical analysis. The age of patients ranged from 40 to 77 years, with a male predilection (88.6%). The main symptoms were neck mass and hoarseness. Grade I and II tumors were most frequent. A total of 13 cases described an extension of the tumor beyond the thyroid cartilage. The most common treatment was partial laryngectomy (50%). All patients who died were male, with grade II or II-III tumor or associated sarcoma, had metastases and received radiotherapy in addition to total laryngectomy. Conclusion: Patient age and tumor size does not influence the prognosis. Tumor grade I and I-II have good prognoses, whereas the prognosis is unpredictable in tumors between grade II and III. Patients with associated sarcoma, or metastasis, have a worse prognosis. Partial laryngectomy is a good therapeutic option, although total laryngectomy is sometimes required in order to ensure complete resection.
基金supported by NSFC (nos 61471168, 61571187,61301043,and 61527806)China Postdoctoral Science Foundation (2016T90403)the Economical Forest Cultivation and Utilization of 2011 Collaborative Innovation Center in Hunan Province [(2013)448]
文摘Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix(ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed.
文摘The extracellular matrix-associated bone morphogenetic proteins(BMPs) govern a plethora of biological processes. The BMPs are members of the transforming growth factor-β protein superfamily, and they actively participate to kidney development, digit and limb formation, angiogenesis, tissue fibrosis and tumor development. Since their discovery, they have attracted attention for their fascinating perspectives in the regenerative medicine and tissue engineering fields. BMPs have been employed in many preclinical and clinical studies exploring their chondrogenic or osteoinductive potential in several animal model defects and in human diseases. During years of research in particular two BMPs, BMP2 and BMP7 have gained the podium for their use in the treatment of various cartilage and bone defects. In particular they have been recently approved for employment in non-union fractures as adjunct therapies. On the other hand, thanks to their potentialities in biomedical applications, there is a growing interest in studying the biology of mesenchymal stem cell(MSC), the rules underneath their differentiation abilities, and to test their true abilities in tissue engineering. In fact, the specific differentiation of MSCs into targeted celltype lineages for transplantation is a primary goal of the regenerative medicine. This review provides an overview on the current knowledge of BMP roles and signaling in MSC biology and differentiation capacities. In particular the article focuses on the potential clinical use of BMPs and MSCs concomitantly, in cartilage and bone tissue repair.
文摘Since articular cartilage possesses only a weak capac-ity for repair, its regeneration potential is considered one of the most important challenges for orthopedic surgeons. The treatment options, such as marrow stimulation techniques, fail to induce a repair tissue with the same functional and mechanical properties of native hyaline cartilage. Osteochondral transplantation is considered an effective treatment option but is as-sociated with some disadvantages, including donor-site morbidity, tissue supply limitation, unsuitable mechani-cal properties and thickness of the obtained tissue. Although autologous chondrocyte implantation results in reasonable repair, it requires a two-step surgical pro-cedure. Moreover, chondrocytes expanded in culture gradually undergo dedifferentiation, so lose morpho-logical features and specialized functions. In the search for alternative cells, scientists have found mesenchymal stem cells(MSCs) to be an appropriate cellular mate-rial for articular cartilage repair. These cells were origi-nally isolated from bone marrow samples and further investigations have revealed the presence of the cells in many other tissues. Furthermore, chondrogenic dif-ferentiation is an inherent property of MSCs noticedat the time of the cell discovery. MSCs are known to exhibit homing potential to the damaged site at which they differentiate into the tissue cells or secrete a wide spectrum of bioactive factors with regenerative proper-ties. Moreover, these cells possess a considerable im-munomodulatory potential that make them the general donor for therapeutic applications. All of these topics will be discussed in this review.
基金supported by the National Key Research and Development Program of China (2016YFC1102900)the National Natural Science Foundation of China (No.81620108006, No.81430012, and No.31700848)
文摘Bone defects caused by trauma,tumour resection,infection and congenital deformities,together with articular cartilage defects and cartilage–subchondral bone complex defects caused by trauma and degenerative diseases,remain great challenges for clinicians.Novel strategies utilising cell sheet technology to enhance bone and cartilage regeneration are being developed.The cell sheet technology has shown great clinical potential in regenerative medicine due to its effective preservation of cell–cell connections and extracellular matrix and its scaffold-free nature.This review will first introduce several widely used cell sheet preparation systems,including traditional approaches and recent improvements,as well as their advantages and shortcomings.Recent advances in utilising cell sheet technology to regenerate bone or cartilage defects and bone–cartilage complex defects will be reviewed.The key challenges and future research directions for the application of cell sheet technology in bone and cartilage regeneration will also be discussed.
基金supported by RGC Themebased Research Scheme of Hong Kong (T13-402/17N)National Natural Science Foundation of China (81802152)+5 种基金Natural Science Foundation of Guangdong Province (2019A1515012224)RGC Areas of Excellence (AoE/M-402/20)RGC Collaborative Research Fund (C4026-17WF)General Research Fund (14121918 and 14173917)the Innovation and Technology Commission Funding (ITS/208/18FX)Key-Area Research and Development Program of Guangdong Province (2019B010941001)。
文摘Osteoarthritis is the most prevalent chronic and debilitating joint disease,resulting in huge medical and socioeconomic burdens.Intra-articular administration of agents is clinically used for pain management.However,the effectiveness is inapparent caused by the rapid clearance of agents.To overcome this issue,nanoparticles as delivery systems hold considerable promise for local control of the pharmacokinetics of therapeutic agents.Given the therapeutic programs are inseparable from pathological progress of osteoarthritis,an ideal delivery system should allow the release of therapeutic agents upon specific features of disorders.In this review,we firstly introduce the pathological features of osteoarthritis and the design concept for accurate localization within cartilage for sustained drug release.Then,we review the interactions of nanoparticles with cartilage microenvironment and the rational design.Furthermore,we highlight advances in the therapeutic schemes according to the pathology signals.Finally,armed with an updated understanding of the pathological mechanisms,we place an emphasis on the development of“smart”bioresponsive and multiple modality nanoparticles on the near horizon to interact with the pathological signals.We anticipate that the exploration of nanoparticles by balancing the efficacy,safety,and complexity will lay down a solid foundation tangible for clinical translation.
文摘Symptomatic chondral or osteochondral defects of the talus reduce the quality of life of many patients.Although their pathomechanism is well understood,it is well known that different aetiologic factors play a role in their origin.Additionally,it is well recognised that the talar articular cartilage strongly differs from that in the knee.Despite this fact,many recommendations for the management of talar cartilage defects are based on approaches that were developed for the knee.Conservative treatment seems to work best in paediatric and adolescent patients with osteochondritis dissecans.However,depending on the size of the lesions,surgical approaches are necessary to treat many of these defects.Bone marrow stimulation techniques may achieve good results in small lesions.Large lesions may be treated by open procedures such as osteochondral autograft transfer or allograft transplantation.Autologous chondrocyte transplantation,as a restorative procedure,is well investigated in the knee and has been applied in the talus with increasing popularity and promising results but the evidence to date is poor.The goals of the current article are to summarise the different options for treating chondral and osteochondral defects of the talus and review the available literature.