Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and com...Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and community heterogeneity.A novel node influence ranking method,community-based Clustering-LeaderRank(CCL)algorithm,is first proposed to identify influential nodes in community networks.Simulation results show that the CCL method can effectively identify the influence of nodes.Based on node influence,a new cascading failure model with heterogeneous redistribution strategy is proposed to describe and analyze node fault propagation in community networks.Analytical and numerical simulation results on cascading failure show that the community attribute has an important influence on the cascading failure process.The network robustness against cascading failures increases when the load is more distributed to neighbors of the same community instead of different communities.When the initial load distribution and the load redistribution strategy based on the node influence are the same,the network shows better robustness against node failure.展开更多
The principal means of conserving water and utilizing hydropower in China is to exploit the use of a series of reservoirs in a cascade. This method and its inherent engineering safety problems are receiving increasing...The principal means of conserving water and utilizing hydropower in China is to exploit the use of a series of reservoirs in a cascade. This method and its inherent engineering safety problems are receiving increasing attention nowadays. In the field of engineering safety analysis, much work has focused on single reservoir projects in the past few years, but there is little research available on the safety risk analysis of cascade reservoirs, either within China or internationally. Therefore, a framework for risk analysis on the cascade reservoir system based on the theory of system engineering is constructed in this article. A cascading failure model is established and the connection degree factor discussed. In addition, the importance degree of the subsystem, which can be calculated by combining the analytical hierarchy process and the entropy weight method, is explained. According to brittleness theory of a complex system, brittle risk entropy is proposed as a performance index for measuring the collapse uncertainty of the cascade reservoir system. In addition, the brittle risk of the cascade reservoir system is predicted, which provides a reference for safety analysis in water conservation and hydropower construction projects in China.展开更多
The Cyber-Physical Power System(CPPS)is one of the most critical infrastructure systems in a country because a stable and secure power supply is a key foundation for national and social development.In recent years,res...The Cyber-Physical Power System(CPPS)is one of the most critical infrastructure systems in a country because a stable and secure power supply is a key foundation for national and social development.In recent years,resilience has become a major topic in preventing and mitigating the risks caused by large-scale blackouts of CPPSs.Accordingly,the concept and significance of CPPS resilience are at first explained from the engineering perspective in this study.Then,a review of representative quantitative assessment measures of CPPS resilience applied in the existing literature is provided.On the basis of these assessment measures,the optimization methods of CPPS resilience are reviewed from three perspectives,which are mainly focused on the current research,namely,optimizing the recovery sequence of components,identifying and protecting critical nodes,and enhancing the coupling patterns between physical and cyber networks.The recent advances in modeling methods for cascading failures within the CPPS,which is the theoretical foundation for the resilience assessment and optimization research of CPPSs,are also presented.Lastly,the challenges and future research directions for resilience optimizing of CPPSs are discussed.展开更多
基金the National Natural Science Foundation of China(Grant Nos.62203229,61672298,61873326,and 61802155)the Philosophy and Social Sciences Research of Universities in Jiangsu Province(Grant No.2018SJZDI142)+2 种基金the Natural Science Research Projects of Universities in Jiangsu Province(Grant No.20KJB120007)the Jiangsu Natural Science Foundation Youth Fund Project(Grant No.BK20200758)Qing Lan Project and the Science and Technology Project of Market Supervision Administration of Jiangsu Province(Grant No.KJ21125027)。
文摘Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and community heterogeneity.A novel node influence ranking method,community-based Clustering-LeaderRank(CCL)algorithm,is first proposed to identify influential nodes in community networks.Simulation results show that the CCL method can effectively identify the influence of nodes.Based on node influence,a new cascading failure model with heterogeneous redistribution strategy is proposed to describe and analyze node fault propagation in community networks.Analytical and numerical simulation results on cascading failure show that the community attribute has an important influence on the cascading failure process.The network robustness against cascading failures increases when the load is more distributed to neighbors of the same community instead of different communities.When the initial load distribution and the load redistribution strategy based on the node influence are the same,the network shows better robustness against node failure.
基金supported by the National Science and Technology Plan(Grant No.2013BAB06B01)the Graduate Student Scientific Research Innovation Projects of Regular Institutions of Jiangsu Province(Grant Nos.CXZZ11_0439&CXZZ13_0236)
文摘The principal means of conserving water and utilizing hydropower in China is to exploit the use of a series of reservoirs in a cascade. This method and its inherent engineering safety problems are receiving increasing attention nowadays. In the field of engineering safety analysis, much work has focused on single reservoir projects in the past few years, but there is little research available on the safety risk analysis of cascade reservoirs, either within China or internationally. Therefore, a framework for risk analysis on the cascade reservoir system based on the theory of system engineering is constructed in this article. A cascading failure model is established and the connection degree factor discussed. In addition, the importance degree of the subsystem, which can be calculated by combining the analytical hierarchy process and the entropy weight method, is explained. According to brittleness theory of a complex system, brittle risk entropy is proposed as a performance index for measuring the collapse uncertainty of the cascade reservoir system. In addition, the brittle risk of the cascade reservoir system is predicted, which provides a reference for safety analysis in water conservation and hydropower construction projects in China.
基金This research is partially supported through the National Natural Science Foundation of China(Grant No.51537010).
文摘The Cyber-Physical Power System(CPPS)is one of the most critical infrastructure systems in a country because a stable and secure power supply is a key foundation for national and social development.In recent years,resilience has become a major topic in preventing and mitigating the risks caused by large-scale blackouts of CPPSs.Accordingly,the concept and significance of CPPS resilience are at first explained from the engineering perspective in this study.Then,a review of representative quantitative assessment measures of CPPS resilience applied in the existing literature is provided.On the basis of these assessment measures,the optimization methods of CPPS resilience are reviewed from three perspectives,which are mainly focused on the current research,namely,optimizing the recovery sequence of components,identifying and protecting critical nodes,and enhancing the coupling patterns between physical and cyber networks.The recent advances in modeling methods for cascading failures within the CPPS,which is the theoretical foundation for the resilience assessment and optimization research of CPPSs,are also presented.Lastly,the challenges and future research directions for resilience optimizing of CPPSs are discussed.