3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage ...3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage waveform of the multilevel inverter as shown in Fig.2(a)展开更多
In cascaded H-bridge multilevel inverter, a variable frequency inverted sine PWM technique is modeled for hybrid electric vehicles. It has a particular advantage of increasing power which is achieved using series conn...In cascaded H-bridge multilevel inverter, a variable frequency inverted sine PWM technique is modeled for hybrid electric vehicles. It has a particular advantage of increasing power which is achieved using series connection of H-bridge and also this topology is capable to produce superior spectral quality with considerable improvement of fundamental voltage. The variable frequency inverted sine PWM technique produces lesser torque ripple and enhances the fundamental output voltage mainly at lower modulation index ranges. The topologies of multilevel inverter are flying capacitor, diode clamped and cascaded inverter. In the paper, we will discuss about the cascaded multilevel inverter based on inverted sine PWM technique. The two switching strategies widely used to control multilevel inverters are constant frequency inverted sine PWM (CF-ISPWM) and variable frequency inverted sine PWM (VF-ISPWM). This implies that switch utilization substantially reduces 32.35% of the constant frequency inverted sine PWM switching technique. The performance of the technique is validated in terms of Total Harmonic Distortion (THD) and Torque ripple which significantly reduces when compared to constant frequency ISPWM. The analysis of conventional triangular PWM inverter and inverted sine PWM inverter using constant and variable switching scheme is done in MATLAB Simulink and verified experimentally by FPGA Spartan 3E processor.展开更多
This paper focuses on a Z source cascaded multilevel inverter which is designed to minimize harmonics in the output voltage. A balanced dc-link peak voltage can be achieved. The power generation module is built by PV ...This paper focuses on a Z source cascaded multilevel inverter which is designed to minimize harmonics in the output voltage. A balanced dc-link peak voltage can be achieved. The power generation module is built by PV panels which are connected to Z-Source Cascade H-bridge inverter. Cascaded multilevel inverter can achieve the distributed maximum power point tracking to increase the system efficiency and achieve high voltage/high power grid tie without a transformer. This paper analyzes the different PWM switching scheme and the operating states of a ZSI module and comparison is made with different PWM and total harmonic distortion of various PWM schemes.展开更多
文摘3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage waveform of the multilevel inverter as shown in Fig.2(a)
文摘In cascaded H-bridge multilevel inverter, a variable frequency inverted sine PWM technique is modeled for hybrid electric vehicles. It has a particular advantage of increasing power which is achieved using series connection of H-bridge and also this topology is capable to produce superior spectral quality with considerable improvement of fundamental voltage. The variable frequency inverted sine PWM technique produces lesser torque ripple and enhances the fundamental output voltage mainly at lower modulation index ranges. The topologies of multilevel inverter are flying capacitor, diode clamped and cascaded inverter. In the paper, we will discuss about the cascaded multilevel inverter based on inverted sine PWM technique. The two switching strategies widely used to control multilevel inverters are constant frequency inverted sine PWM (CF-ISPWM) and variable frequency inverted sine PWM (VF-ISPWM). This implies that switch utilization substantially reduces 32.35% of the constant frequency inverted sine PWM switching technique. The performance of the technique is validated in terms of Total Harmonic Distortion (THD) and Torque ripple which significantly reduces when compared to constant frequency ISPWM. The analysis of conventional triangular PWM inverter and inverted sine PWM inverter using constant and variable switching scheme is done in MATLAB Simulink and verified experimentally by FPGA Spartan 3E processor.
文摘This paper focuses on a Z source cascaded multilevel inverter which is designed to minimize harmonics in the output voltage. A balanced dc-link peak voltage can be achieved. The power generation module is built by PV panels which are connected to Z-Source Cascade H-bridge inverter. Cascaded multilevel inverter can achieve the distributed maximum power point tracking to increase the system efficiency and achieve high voltage/high power grid tie without a transformer. This paper analyzes the different PWM switching scheme and the operating states of a ZSI module and comparison is made with different PWM and total harmonic distortion of various PWM schemes.