Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c...Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.展开更多
The membrane fouling phenomenon,reflected with various fouling characterization in the membrane bioreactor(MBR)process,is so complicated to distinguish.This paper proposes a multivariable identification model(MIM)base...The membrane fouling phenomenon,reflected with various fouling characterization in the membrane bioreactor(MBR)process,is so complicated to distinguish.This paper proposes a multivariable identification model(MIM)based on a compacted cascade neural network to identify membrane fouling accurately.Firstly,a multivariable model is proposed to calculate multiple indicators of membrane fouling using a cascade neural network,which could avoid the interference of the overlap inputs.Secondly,an unsupervised pretraining algorithm was developed with periodic information of membrane fouling to obtain the compact structure of MIM.Thirdly,a hierarchical learning algorithm was proposed to update the parameters of MIM for improving the identification accuracy online.Finally,the proposed model was tested in real plants to evaluate its efficiency and effectiveness.Experimental results have verified the benefits of the proposed method.展开更多
This paper proposes a cascade deep convolutional neural network to address the loosening detection problem of bolts on axlebox covers.Firstly,an SSD network based on ResNet50 and CBAM module by improving bolt image fe...This paper proposes a cascade deep convolutional neural network to address the loosening detection problem of bolts on axlebox covers.Firstly,an SSD network based on ResNet50 and CBAM module by improving bolt image features is proposed for locating bolts on axlebox covers.And then,theA2-PFN is proposed according to the slender features of the marker lines for extracting more accurate marker lines regions of the bolts.Finally,a rectangular approximationmethod is proposed to regularize themarker line regions asaway tocalculate the angle of themarker line and plot all the angle values into an angle table,according to which the criteria of the angle table can determine whether the bolt with the marker line is in danger of loosening.Meanwhile,our improved algorithm is compared with the pre-improved algorithmin the object localization stage.The results show that our proposed method has a significant improvement in both detection accuracy and detection speed,where ourmAP(IoU=0.75)reaches 0.77 and fps reaches 16.6.And in the saliency detection stage,after qualitative comparison and quantitative comparison,our method significantly outperforms other state-of-the-art methods,where our MAE reaches 0.092,F-measure reaches 0.948 and AUC reaches 0.943.Ultimately,according to the angle table,out of 676 bolt samples,a total of 60 bolts are loose,69 bolts are at risk of loosening,and 547 bolts are tightened.展开更多
In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a ...In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys.展开更多
A cascaded model of neural network and its learning algorithm suitable for opticalimplementation are proposed.Computer simulations have shown that this model may successfullybe applied to an error-tolerance pattern re...A cascaded model of neural network and its learning algorithm suitable for opticalimplementation are proposed.Computer simulations have shown that this model may successfullybe applied to an error-tolerance pattern recognitions of multiple 3-D targets with arbitrary spatialorientations.展开更多
A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monito...A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target.展开更多
The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,whi...The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing.展开更多
Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction.U-Net has been the baseline model since the very beginning du...Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction.U-Net has been the baseline model since the very beginning due to a symmetricalU-structure for better feature extraction and fusing and suitable for small datasets.To enhance the segmentation performance of U-Net,cascaded U-Net proposes to put two U-Nets successively to segment targets from coarse to fine.However,the plain cascaded U-Net faces the problem of too less between connections so the contextual information learned by the former U-Net cannot be fully used by the latter one.In this article,we devise novel Inner Cascaded U-Net and Inner Cascaded U^(2)-Net as improvements to plain cascaded U-Net for medical image segmentation.The proposed Inner Cascaded U-Net adds inner nested connections between two U-Nets to share more contextual information.To further boost segmentation performance,we propose Inner Cascaded U^(2)-Net,which applies residual U-block to capture more global contextual information from different scales.The proposed models can be trained from scratch in an end-to-end fashion and have been evaluated on Multimodal Brain Tumor Segmentation Challenge(BraTS)2013 and ISBI Liver Tumor Segmentation Challenge(LiTS)dataset in comparison to related U-Net,cascaded U-Net,U-Net++,U^(2)-Net and state-of-the-art methods.Our experiments demonstrate that our proposed Inner Cascaded U-Net and Inner Cascaded U^(2)-Net achieve better segmentation performance in terms of dice similarity coefficient and hausdorff distance as well as get finer outline segmentation.展开更多
Image super resolution is an important field of computer research.The current mainstream image super-resolution technology is to use deep learning to mine the deeper features of the image,and then use it for image res...Image super resolution is an important field of computer research.The current mainstream image super-resolution technology is to use deep learning to mine the deeper features of the image,and then use it for image restoration.However,most of these models mentioned above only trained the images in a specific scale and do not consider the relationships between different scales of images.In order to utilize the information of images at different scales,we design a cascade network structure and cascaded super-resolution convolutional neural networks.This network contains three cascaded FSRCNNs.Due to each sub FSRCNN can process a specific scale image,our network can simultaneously exploit three scale images,and can also use the information of three different scales of images.Experiments on multiple datasets confirmed that the proposed network can achieve better performance for image SR.展开更多
The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly...The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly affected by background patterns and are difficult to effectively extract flaw features.Therefore,a convolutional neural network(CNN)with automatic feature extraction is proposed.On the basis of the two-stage detection model Faster R-CNN,Resnet-50 is used as the backbone network,and the problem of flaws with extreme aspect ratio is solved by improving the initialization algorithm of the prior frame aspect ratio,and the improved multi-scale model is designed to improve detection of small defects.The cascade R-CNN is introduced to improve the accuracy of defect detection,and the online hard example mining(OHEM)algorithm is used to strengthen the learning of hard samples to reduce the interference of complex backgrounds on the defect detection of patterned fabrics,and construct the focal loss as a loss function to reduce the impact of sample imbalance.In order to verify the effectiveness of the improved algorithm,a defect detection comparison experiment was set up.The experimental results show that the accuracy of the defect detection algorithm of patterned fabrics in this paper can reach 95.7%,and it can accurately locate the defect location and meet the actual needs of the factory.展开更多
针对高压输电线路中防振锤的背景复杂、缺陷目标小及类别数量不均衡问题,提出一种改进的Cascade R-CNN(cascade region convolutional neural networks)网络模型,用于防振锤的缺陷识别.将SE(squeeze and excitation)模块嵌入ResNet-101(...针对高压输电线路中防振锤的背景复杂、缺陷目标小及类别数量不均衡问题,提出一种改进的Cascade R-CNN(cascade region convolutional neural networks)网络模型,用于防振锤的缺陷识别.将SE(squeeze and excitation)模块嵌入ResNet-101(residual network-101),以增强网络学习能力.引入FPN(feature pyramid networks)模块提取多尺度的缺陷特征.利用Focal Loss函数降低Cascade R-CNN候选区域提取模块的分类损失.实验结果表明:相对于其他4种模型,该文模型有相对高的识别准确率;识别防振锤缺陷的效果良好.因此,该文模型具有有效性.展开更多
为解决角度变化下的人脸检测中存在参数量大及角度幅度变量小的问题,提出区域渐进校准网络用于任意平面角度的人脸检测,通过级联网络结构降低角度变化、提升网络运行速度。采用区域生成网络产生高质量的候选区域,构造渐进校准网络,逐步...为解决角度变化下的人脸检测中存在参数量大及角度幅度变量小的问题,提出区域渐进校准网络用于任意平面角度的人脸检测,通过级联网络结构降低角度变化、提升网络运行速度。采用区域生成网络产生高质量的候选区域,构造渐进校准网络,逐步缩小面部平面角度变化范围,同时由粗到细地对候选区域执行面部检测。其中,特征提取的中间层融合参数量较少时,更好地表示了面部特征,调整锚的设置解决小尺度面部问题。在角度增强的FDDB(face detection data set and benchmark)数据集与WIDER FACE数据集上的实验结果表明,提出的方法分别取得了89.1%与90.4%的平均召回率,准确度高于快速区域卷积神经网络(Faster RCNN),且运行速度更快。在实际项目中使用该算法,验证了该方法的有效性及可行性。展开更多
基金The authors acknowledge the funding provided by the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117,No.62005017)programBeijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)This work was supported by the Synergetic Extreme Condition User Facility(SECUF).
文摘Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.
基金supports by National Key Research and Development Project(2018YFC1900800-5)National Natural Science Foundation of China(61890930-5,62021003,61903010 and 62103012)+1 种基金Beijing Outstanding Young Scientist Program(BJJWZYJH01201910005020)Beijing Natural Science Foundation(KZ202110005009 and 4214068).
文摘The membrane fouling phenomenon,reflected with various fouling characterization in the membrane bioreactor(MBR)process,is so complicated to distinguish.This paper proposes a multivariable identification model(MIM)based on a compacted cascade neural network to identify membrane fouling accurately.Firstly,a multivariable model is proposed to calculate multiple indicators of membrane fouling using a cascade neural network,which could avoid the interference of the overlap inputs.Secondly,an unsupervised pretraining algorithm was developed with periodic information of membrane fouling to obtain the compact structure of MIM.Thirdly,a hierarchical learning algorithm was proposed to update the parameters of MIM for improving the identification accuracy online.Finally,the proposed model was tested in real plants to evaluate its efficiency and effectiveness.Experimental results have verified the benefits of the proposed method.
文摘This paper proposes a cascade deep convolutional neural network to address the loosening detection problem of bolts on axlebox covers.Firstly,an SSD network based on ResNet50 and CBAM module by improving bolt image features is proposed for locating bolts on axlebox covers.And then,theA2-PFN is proposed according to the slender features of the marker lines for extracting more accurate marker lines regions of the bolts.Finally,a rectangular approximationmethod is proposed to regularize themarker line regions asaway tocalculate the angle of themarker line and plot all the angle values into an angle table,according to which the criteria of the angle table can determine whether the bolt with the marker line is in danger of loosening.Meanwhile,our improved algorithm is compared with the pre-improved algorithmin the object localization stage.The results show that our proposed method has a significant improvement in both detection accuracy and detection speed,where ourmAP(IoU=0.75)reaches 0.77 and fps reaches 16.6.And in the saliency detection stage,after qualitative comparison and quantitative comparison,our method significantly outperforms other state-of-the-art methods,where our MAE reaches 0.092,F-measure reaches 0.948 and AUC reaches 0.943.Ultimately,according to the angle table,out of 676 bolt samples,a total of 60 bolts are loose,69 bolts are at risk of loosening,and 547 bolts are tightened.
文摘In this paper, we use the global search characteristics of genetic algorithms to help search the weight space of the neurons in the cascade-correlation architecture. The cascade-correlation learning architecture is a technique of training and building neural networks that starts with a simple network of neurons and adds additional neurons as they are needed to suit a particular problem. In our approach, instead ofmodifying the genetic algorithm to account for convergence problems, we search the weight-space using the genetic algorithm and then apply the gradient technique of Quickprop to optimize the weights. This hybrid algorithm which is a combination of genetic algorithms and cascade-correlation is applied to the two spirals problem. We also use our algorithm in the prediction of the cyclic oxidation resistance of Ni- and Co-base superalloys.
基金the National Natural Science Foundation of China.
文摘A cascaded model of neural network and its learning algorithm suitable for opticalimplementation are proposed.Computer simulations have shown that this model may successfullybe applied to an error-tolerance pattern recognitions of multiple 3-D targets with arbitrary spatialorientations.
基金funded by National Natural Science Foundation of China(Grant No. 51805146)the Fundamental Research Funds for the Central Universities (Grant No. B200202221)+1 种基金Jiangsu Key R&D Program (Grant Nos. BE2018004-1, BE2018004)College Students’ Innovative Entrepreneurial Training Plan Program (Grant No. 2020102941513)。
文摘A 3D laser scanning strategy based on cascaded deep neural network is proposed for the scanning system converted from 2D Lidar with a pitching motion device. The strategy is aimed at moving target detection and monitoring. Combining the device characteristics, the strategy first proposes a cascaded deep neural network, which inputs 2D point cloud, color image and pitching angle. The outputs are target distance and speed classification. And the cross-entropy loss function of network is modified by using focal loss and uniform distribution to improve the recognition accuracy. Then a pitching range and speed model are proposed to determine pitching motion parameters. Finally, the adaptive scanning is realized by integral separate speed PID. The experimental results show that the accuracies of the improved network target detection box, distance and speed classification are 90.17%, 96.87% and 96.97%, respectively. The average speed error of the improved PID is 0.4239°/s, and the average strategy execution time is 0.1521 s.The range and speed model can effectively reduce the collection of useless information and the deformation of the target point cloud. Conclusively, the experimental of overall scanning strategy show that it can improve target point cloud integrity and density while ensuring the capture of target.
基金financial supports from the National Key Research and Development Program of China(2018YFB2200403)National Natural Sci-ence Foundation of China(NSFC)(61775003,11734001,91950204,11527901,11604378,91850117).
文摘The rapid development of information technology has fueled an ever-increasing demand for ultrafast and ultralow-en-ergy-consumption computing.Existing computing instruments are pre-dominantly electronic processors,which use elec-trons as information carriers and possess von Neumann architecture featured by physical separation of storage and pro-cessing.The scaling of computing speed is limited not only by data transfer between memory and processing units,but also by RC delay associated with integrated circuits.Moreover,excessive heating due to Ohmic losses is becoming a severe bottleneck for both speed and power consumption scaling.Using photons as information carriers is a promising alternative.Owing to the weak third-order optical nonlinearity of conventional materials,building integrated photonic com-puting chips under traditional von Neumann architecture has been a challenge.Here,we report a new all-optical comput-ing framework to realize ultrafast and ultralow-energy-consumption all-optical computing based on convolutional neural networks.The device is constructed from cascaded silicon Y-shaped waveguides with side-coupled silicon waveguide segments which we termed“weight modulators”to enable complete phase and amplitude control in each waveguide branch.The generic device concept can be used for equation solving,multifunctional logic operations as well as many other mathematical operations.Multiple computing functions including transcendental equation solvers,multifarious logic gate operators,and half-adders were experimentally demonstrated to validate the all-optical computing performances.The time-of-flight of light through the network structure corresponds to an ultrafast computing time of the order of several picoseconds with an ultralow energy consumption of dozens of femtojoules per bit.Our approach can be further expan-ded to fulfill other complex computing tasks based on non-von Neumann architectures and thus paves a new way for on-chip all-optical computing.
基金supported in part by the National Nature Science Foundation of China(No.62172299)in part by the Shanghai Municipal Science and Technology Major Project(No.2021SHZDZX0100)in part by the Fundamental Research Funds for the Central Universi-ties of China.
文摘Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction.U-Net has been the baseline model since the very beginning due to a symmetricalU-structure for better feature extraction and fusing and suitable for small datasets.To enhance the segmentation performance of U-Net,cascaded U-Net proposes to put two U-Nets successively to segment targets from coarse to fine.However,the plain cascaded U-Net faces the problem of too less between connections so the contextual information learned by the former U-Net cannot be fully used by the latter one.In this article,we devise novel Inner Cascaded U-Net and Inner Cascaded U^(2)-Net as improvements to plain cascaded U-Net for medical image segmentation.The proposed Inner Cascaded U-Net adds inner nested connections between two U-Nets to share more contextual information.To further boost segmentation performance,we propose Inner Cascaded U^(2)-Net,which applies residual U-block to capture more global contextual information from different scales.The proposed models can be trained from scratch in an end-to-end fashion and have been evaluated on Multimodal Brain Tumor Segmentation Challenge(BraTS)2013 and ISBI Liver Tumor Segmentation Challenge(LiTS)dataset in comparison to related U-Net,cascaded U-Net,U-Net++,U^(2)-Net and state-of-the-art methods.Our experiments demonstrate that our proposed Inner Cascaded U-Net and Inner Cascaded U^(2)-Net achieve better segmentation performance in terms of dice similarity coefficient and hausdorff distance as well as get finer outline segmentation.
基金supported in part by the National Natural Science Foundation of China under Grant 61806099in part by the Natural Science Foundation of Jiangsu Province of China under Grant BK20180790,in part by the Natural Science Research of Jiangsu Higher Education Institutions of China under Grant 8KJB520033in part by Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology under Grant 2243141701077.
文摘Image super resolution is an important field of computer research.The current mainstream image super-resolution technology is to use deep learning to mine the deeper features of the image,and then use it for image restoration.However,most of these models mentioned above only trained the images in a specific scale and do not consider the relationships between different scales of images.In order to utilize the information of images at different scales,we design a cascade network structure and cascaded super-resolution convolutional neural networks.This network contains three cascaded FSRCNNs.Due to each sub FSRCNN can process a specific scale image,our network can simultaneously exploit three scale images,and can also use the information of three different scales of images.Experiments on multiple datasets confirmed that the proposed network can achieve better performance for image SR.
基金National Key Research and Development Project,China(No.2018YFB1308800)。
文摘The background pattern of patterned fabrics is complex,which has a great interference in the extraction of defect features.Traditional machine vision algorithms rely on artificially designed features,which are greatly affected by background patterns and are difficult to effectively extract flaw features.Therefore,a convolutional neural network(CNN)with automatic feature extraction is proposed.On the basis of the two-stage detection model Faster R-CNN,Resnet-50 is used as the backbone network,and the problem of flaws with extreme aspect ratio is solved by improving the initialization algorithm of the prior frame aspect ratio,and the improved multi-scale model is designed to improve detection of small defects.The cascade R-CNN is introduced to improve the accuracy of defect detection,and the online hard example mining(OHEM)algorithm is used to strengthen the learning of hard samples to reduce the interference of complex backgrounds on the defect detection of patterned fabrics,and construct the focal loss as a loss function to reduce the impact of sample imbalance.In order to verify the effectiveness of the improved algorithm,a defect detection comparison experiment was set up.The experimental results show that the accuracy of the defect detection algorithm of patterned fabrics in this paper can reach 95.7%,and it can accurately locate the defect location and meet the actual needs of the factory.
文摘为解决角度变化下的人脸检测中存在参数量大及角度幅度变量小的问题,提出区域渐进校准网络用于任意平面角度的人脸检测,通过级联网络结构降低角度变化、提升网络运行速度。采用区域生成网络产生高质量的候选区域,构造渐进校准网络,逐步缩小面部平面角度变化范围,同时由粗到细地对候选区域执行面部检测。其中,特征提取的中间层融合参数量较少时,更好地表示了面部特征,调整锚的设置解决小尺度面部问题。在角度增强的FDDB(face detection data set and benchmark)数据集与WIDER FACE数据集上的实验结果表明,提出的方法分别取得了89.1%与90.4%的平均召回率,准确度高于快速区域卷积神经网络(Faster RCNN),且运行速度更快。在实际项目中使用该算法,验证了该方法的有效性及可行性。