River hydrogeochemistry offers necessary guidance for effective water environmental management.However,the influence of cascade reservoirs on river hydrogeochemistry remains unknown.In this study,the Jinsha River,the ...River hydrogeochemistry offers necessary guidance for effective water environmental management.However,the influence of cascade reservoirs on river hydrogeochemistry remains unknown.In this study,the Jinsha River,the headwaters of the Yangtze River of China,was selected to investigate the spatiotemporal variations of hydrogeochemistry after the construction of six cascade reservoirs.Major ions,total dissolved solids,electrical conductivity,and pH values of sampled water in the upper natural reaches and lower reservoir-regulated reaches were analyzed in both flood and dry seasons.The results of Piper diagram and Gibbs plots showed that the hydrogeochemistry of the Jinsha River was naturally controlled by both evaporation-crystallization and carbonate weathering processes,but it was also artificially affected by reservoirs.The impoundment of cascade reservoirs affected the hydrodynamic condition of the river.The river flow in the flood season was reduced by approximately 24.5%,altering the proportions of water sources and leading to notable hydrogeochemical alterations in reservoir-regulated reaches.Conversely,river hydrogeochemistry generally remained unchanged in the dry season,owing to the insignificant effect of cascade reservoirs on river flow.In contrast to what has been observed in previous studies of individual reservoirs,the cumulative influence of cascade reservoirs on the Jinsha River flow regime did not cause abrupt hydrogeochemical changes between the upstream and downstream areas of each reservoir.Moreover,the water quality assessments revealed that the impoundment of cascade reservoirs improved downstream irrigational water quality,with lower Naþratio values in the flood season.This study provides the earliest evaluation of cascade reservoir influence on the hydrogeochemistry of the Jinsha River.The findings of this study can be used as a reference for scientific guidelines for future environmental management of cascade reservoirs in large rivers.展开更多
The cumulative effect of cascade hydropower stations on river ecological environment has been widely concerned because of the significant streamflow hydrology change induced by dam constructions. The characteristics o...The cumulative effect of cascade hydropower stations on river ecological environment has been widely concerned because of the significant streamflow hydrology change induced by dam constructions. The characteristics of the change in the lower reaches of the Jinsha River, China are analyzed based on long-term(1952–2015) hydrological and sedimentological data. The averaging coefficient, reservoir regulation coefficient(RRC), incoming sediment coefficient(ISC), and sediment transport modulus(STM), which reflect the variation of streamflow and sediment regimes, are defined and calculated. The results show that the construction and regulation of reservoirs reduces flow in flood season, increases flow in dry season, significantly altering the monthly discharge regimes. These alterations also led directly to changes in the timing of extreme flows at Pingshan Station. The monthly flow records at the basin outlet are reconstructed using stepwise regression, to reduce reservoir impacts. Comparisons of observed and reconstructed monthly flows demonstrate that the previous studies overestimated the cumulative effects of cascade reservoirs on flow processes. Furthermore, this study clearly illustrates that the reduction in sediment trapping and sediment transportation capacity together lead to the sharp reduction in annual sediment yield at the Pingshan Station. The earlier constructed reservoirs have more obvious effects on the ISC and STM than the more recent reservoirs and the effect of sediment trapping is related to reservoir location, on the main stream versus tributaries.展开更多
The Jinsha River Basin is an important basin for hydropower in China and it is also the main runoff and sediment source area for the Yangtze River,which greatly influence the runoff and sediment in the Three Gorges Re...The Jinsha River Basin is an important basin for hydropower in China and it is also the main runoff and sediment source area for the Yangtze River,which greatly influence the runoff and sediment in the Three Gorges Reservoir.This study aims to characterize the spatial distribution,inter-annual variation of runoff and sediment load in the Jinsha River Basin,and to analyze the contribution of rainfall and human activities to the runoff and sediment load changes.The monitoring data on runoff,sediment load and precipitation were collected from 11hydrological stations in the Jinsha River Basin from1966 to 2016.The data observed at the outlet of the basin showed that 71.4%of the runoff is from the upper reaches of the Jinsha River Basin and the Yalong River,while 63.3%of the sediment is from the lower reaches(excluding the Yalong River).There is no significant increase in runoff on temporal scale in the Jinsha River Basin,while it has an abrupt change in runoff in both upstream and midstream in 1985,and an abrupt change in downstream in 1980 and2013.The sediment load demonstrated a significantincreasing trend in the upstream,no significant reducing trend in the midstream,but significant reducing trend in the downstream.The sediment load in upstream showed abrupt change in 1987,in midstream in 1978 and 2014,in downstream in 2012.Rainfall dominated runoff variation,contributing more than 59.0%of the total variation,while human activity,including reservoirs construction,the implementation of soil and water conservation projects,is the major factor to sediment load variation,contributing more than 87.0%of the total variation.展开更多
The landslides and rockfalls were studied in this paper from Xiangjiaba to Baihetan in the lower reach of Jinsha river. Their volume, distribution density and landslide index were studied which indicated that there ex...The landslides and rockfalls were studied in this paper from Xiangjiaba to Baihetan in the lower reach of Jinsha river. Their volume, distribution density and landslide index were studied which indicated that there existed close relationships between landslides and rockfalls and geological structure, stratum. The fold and faultage influenced on the stability of slope and offered the geological condition to landslides and rockfalls. The physiognomy controlled their distribution. Slope angles of landslides were 10 °-50°and slope angles of rockfalls were mainly 35°-50° in the valley in the studied area. The results indicated the geology and physiognomy of distribution area of the landslides and rockfalls in the studied area. They offered the theoretical foundation to prevent and cure geological disaster and protect the water power engineering.展开更多
基金This work was supported by the National Key Research and Development Program of China(Grant No.2016YFC0502203)the National Science Funds for Creative Research Groups of China(Grant No.51421006)the Key Program of the National Natural Science Foundation of China(Grant No.91647206).
文摘River hydrogeochemistry offers necessary guidance for effective water environmental management.However,the influence of cascade reservoirs on river hydrogeochemistry remains unknown.In this study,the Jinsha River,the headwaters of the Yangtze River of China,was selected to investigate the spatiotemporal variations of hydrogeochemistry after the construction of six cascade reservoirs.Major ions,total dissolved solids,electrical conductivity,and pH values of sampled water in the upper natural reaches and lower reservoir-regulated reaches were analyzed in both flood and dry seasons.The results of Piper diagram and Gibbs plots showed that the hydrogeochemistry of the Jinsha River was naturally controlled by both evaporation-crystallization and carbonate weathering processes,but it was also artificially affected by reservoirs.The impoundment of cascade reservoirs affected the hydrodynamic condition of the river.The river flow in the flood season was reduced by approximately 24.5%,altering the proportions of water sources and leading to notable hydrogeochemical alterations in reservoir-regulated reaches.Conversely,river hydrogeochemistry generally remained unchanged in the dry season,owing to the insignificant effect of cascade reservoirs on river flow.In contrast to what has been observed in previous studies of individual reservoirs,the cumulative influence of cascade reservoirs on the Jinsha River flow regime did not cause abrupt hydrogeochemical changes between the upstream and downstream areas of each reservoir.Moreover,the water quality assessments revealed that the impoundment of cascade reservoirs improved downstream irrigational water quality,with lower Naþratio values in the flood season.This study provides the earliest evaluation of cascade reservoir influence on the hydrogeochemistry of the Jinsha River.The findings of this study can be used as a reference for scientific guidelines for future environmental management of cascade reservoirs in large rivers.
基金financially supported by the National 973 Program of China (2015CB452701)the National Natural Science Foundation of China (Grant No. 51579161)
文摘The cumulative effect of cascade hydropower stations on river ecological environment has been widely concerned because of the significant streamflow hydrology change induced by dam constructions. The characteristics of the change in the lower reaches of the Jinsha River, China are analyzed based on long-term(1952–2015) hydrological and sedimentological data. The averaging coefficient, reservoir regulation coefficient(RRC), incoming sediment coefficient(ISC), and sediment transport modulus(STM), which reflect the variation of streamflow and sediment regimes, are defined and calculated. The results show that the construction and regulation of reservoirs reduces flow in flood season, increases flow in dry season, significantly altering the monthly discharge regimes. These alterations also led directly to changes in the timing of extreme flows at Pingshan Station. The monthly flow records at the basin outlet are reconstructed using stepwise regression, to reduce reservoir impacts. Comparisons of observed and reconstructed monthly flows demonstrate that the previous studies overestimated the cumulative effects of cascade reservoirs on flow processes. Furthermore, this study clearly illustrates that the reduction in sediment trapping and sediment transportation capacity together lead to the sharp reduction in annual sediment yield at the Pingshan Station. The earlier constructed reservoirs have more obvious effects on the ISC and STM than the more recent reservoirs and the effect of sediment trapping is related to reservoir location, on the main stream versus tributaries.
基金supported by the “National Key R & D Plan Project of China (2018YFD0200502)the 135 Strategic Program of the Institute of Mountain Hazards and Environment, CAS (SDS135-1702)
文摘The Jinsha River Basin is an important basin for hydropower in China and it is also the main runoff and sediment source area for the Yangtze River,which greatly influence the runoff and sediment in the Three Gorges Reservoir.This study aims to characterize the spatial distribution,inter-annual variation of runoff and sediment load in the Jinsha River Basin,and to analyze the contribution of rainfall and human activities to the runoff and sediment load changes.The monitoring data on runoff,sediment load and precipitation were collected from 11hydrological stations in the Jinsha River Basin from1966 to 2016.The data observed at the outlet of the basin showed that 71.4%of the runoff is from the upper reaches of the Jinsha River Basin and the Yalong River,while 63.3%of the sediment is from the lower reaches(excluding the Yalong River).There is no significant increase in runoff on temporal scale in the Jinsha River Basin,while it has an abrupt change in runoff in both upstream and midstream in 1985,and an abrupt change in downstream in 1980 and2013.The sediment load demonstrated a significantincreasing trend in the upstream,no significant reducing trend in the midstream,but significant reducing trend in the downstream.The sediment load in upstream showed abrupt change in 1987,in midstream in 1978 and 2014,in downstream in 2012.Rainfall dominated runoff variation,contributing more than 59.0%of the total variation,while human activity,including reservoirs construction,the implementation of soil and water conservation projects,is the major factor to sediment load variation,contributing more than 87.0%of the total variation.
文摘The landslides and rockfalls were studied in this paper from Xiangjiaba to Baihetan in the lower reach of Jinsha river. Their volume, distribution density and landslide index were studied which indicated that there existed close relationships between landslides and rockfalls and geological structure, stratum. The fold and faultage influenced on the stability of slope and offered the geological condition to landslides and rockfalls. The physiognomy controlled their distribution. Slope angles of landslides were 10 °-50°and slope angles of rockfalls were mainly 35°-50° in the valley in the studied area. The results indicated the geology and physiognomy of distribution area of the landslides and rockfalls in the studied area. They offered the theoretical foundation to prevent and cure geological disaster and protect the water power engineering.