We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the thre...We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.展开更多
We experimentally designed dispersion-managed repeaterless transmission systems with a pre-compensation and post-compensation technique using multi-channel-chirped fiber Bragg gratings. The repeaterless transmission l...We experimentally designed dispersion-managed repeaterless transmission systems with a pre-compensation and post-compensation technique using multi-channel-chirped fiber Bragg gratings. The repeaterless transmission link supports a single channel(1548.51 nm) with a 10 Gbps repeaterless transmission system over 300 km standard single-mode fiber(SSMF). In the system design, two distributed Raman amplifiers(DRAs) were used to improve the signal level propagated along the 300 km SSMF. The co-propagating DRA provided 15 dB on–off gain and the counter-propagating produced 32 dB on–off gain at the signal wavelength. The experiment results show that the post-compensation configuration achieves an optimal performance with a bit error rate at 1 × 10-9.展开更多
An optical fiber magnetic field sensor for the dual-parameter simultaneous measurement is proposed and demonstrated. The sensor head is constructed by a peanut-shape structure and long period fiber grating(LPFG) coate...An optical fiber magnetic field sensor for the dual-parameter simultaneous measurement is proposed and demonstrated. The sensor head is constructed by a peanut-shape structure and long period fiber grating(LPFG) coated by magnetic fluid(MF). The external magnetic field intensity can be measured by the variation of characteristic wavelength(Dip1 and Dip2) in interference spectrum since the effective refractive index of MF changes with external magnetic field intensity. When the external magnetic field intensity changes from 0 mT to 20 mT, the magnetic field sensitivities of Dip1 and Dip2 are -0.064 nm/mT and -0.041 nm/mT, respectively. Experimental results show that the temperature sensitivities of the Dip1 and Dip2 are 0.233 nm/℃ and 0.186 nm/°C, respectively. Therefore, the simultaneous measurement of the magnetic field intensity and temperature is demonstrated based on the sensitive matrix. It has some potential applications in aerospace, environmental monitoring and medical sensing fields.展开更多
In this Letter,we demonstrate a 1×4 low-crosstalk silicon photonics cascaded arrayed waveguide grating,which is fabricated on a silicon-on-insulator wafer with a 220-nm-thick top silicon layer and a 2μm buried o...In this Letter,we demonstrate a 1×4 low-crosstalk silicon photonics cascaded arrayed waveguide grating,which is fabricated on a silicon-on-insulator wafer with a 220-nm-thick top silicon layer and a 2μm buried oxide layer.The measured on-chip transmission loss of this cascaded arrayed waveguide grating is~4.0 dB,and the fiber-towaveguide coupling loss is 1.8 dB/facet.The measured channel spacing is 6.4 nm.The adjacent crosstalk by characterization is very low,only -33.2 dB.Compared to the normal single silicon photonics arrayed waveguide grating with a crosstalk of ~-12.5 dB,the crosstalk of more than 20 dB is dramatically improved in this cascaded device.展开更多
A new wavelength division multiplexing method for fiber Bragg grating(FBG) sensors based on spectrum profile identification is proposed. In this method, FBGs and tilted FBG(TFBG) sensors are cascaded in a single f...A new wavelength division multiplexing method for fiber Bragg grating(FBG) sensors based on spectrum profile identification is proposed. In this method, FBGs and tilted FBG(TFBG) sensors are cascaded in a single fiber in one sensing channel. The different spectrum profiles enable the cross-correlation method to demodulate the wavelength. Therefore, the different types of sensors can occupy the same central wavelength band. Using this method, the multiplexing capacity is optimized. Experiment results demonstrate the feasibility of this method and it is useful for applications where large numbers of FBGs are needed.展开更多
A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating(FBG) Fabry-Perot(FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third F...A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating(FBG) Fabry-Perot(FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third FBG is used as intracavity wavelength selector by changing its operation temperature. Experimental results show that by adjusting the operation temperature of the intracavity wavelength selector, a tunable dual-wavelength laser emission can be achieved. The results demonstrate the new concept of dual-wavelength lasing with asymmetric FBG FP resonator and its technical feasibility.展开更多
A switchable dual-wavelength erbium-doped fiber laser(EDFL) with tunable wavelength is demonstrated. The ring cavity consists of two branches with a fiber Bragg grating(FBG) and a spherical-shape structure as fiber fi...A switchable dual-wavelength erbium-doped fiber laser(EDFL) with tunable wavelength is demonstrated. The ring cavity consists of two branches with a fiber Bragg grating(FBG) and a spherical-shape structure as fiber filters, respectively. By adjusting the variable optical attenuator(VOA), the laser can be switched between the single-wavelength mode and the dual-wavelength mode. The spherical-shape structure has good sensitivity to the temperature. When the temperature changes from 30 °C to 190 °C, the central wavelength of the EDFL generated by the branch of spherical-shape structure varies from 1 551.6 nm to 1 561.8 nm, which means that the wavelength interval is tunable.展开更多
An adaptive tensor voting algorithm combined with texture spectrum is proposed. The image texture spectrum is used to get the adaptive scale parameter of voting field. Then the texture information modifies both the at...An adaptive tensor voting algorithm combined with texture spectrum is proposed. The image texture spectrum is used to get the adaptive scale parameter of voting field. Then the texture information modifies both the attenuation coefficient and the attenuation field so that we can use this algorithm to create more significant and correct structures in the original image according to the human visual perception. At the same time, the proposed method can improve the edge extraction quality, which includes decreasing the flocculent region efficiently and making image clear. In the experiment for extracting pavement cracks, the original pavement image is processed by the proposed method which is combined with the significant curve feature threshold procedure, and the resulted image displays the faint crack signals submerged in the complicated background efficiently and clearly.展开更多
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB632801 and 2013CB632803the National Natural Science Foundation of China under Grant Nos 61435014,61306058 and 61274094the Beijing Natural Science Foundation under Grant No 4144086
文摘We report on the room-temperature cascade laser (QCL) at λ -4.7μm. cw operation of a surface grating Both grating design and material distributed feedback (DFB) quantum optimization are used to decrease the threshold current density and to increase the output power. For a high-reflectivity-coated 13-μm-wide and 4- mm-long laser, high wall-plug efficiency of 6% is obtained at 20℃ from a single facet producing over I W of ew output power. The threshold current density of DFB QCL is as low as 1.13kA/cm^2 at 10℃ and 1.34kA/cm2 at 30℃ in cw mode. Stable single-mode emission with a side-mode suppression ratio of about 30 dB is observed in tile working temperature range of 20-50℃.
基金supported by the Telekom Malaysia Berhad(TM)and TM Research & Development Sdn Bhd(RDTC/110782 and RDTC/140859)
文摘We experimentally designed dispersion-managed repeaterless transmission systems with a pre-compensation and post-compensation technique using multi-channel-chirped fiber Bragg gratings. The repeaterless transmission link supports a single channel(1548.51 nm) with a 10 Gbps repeaterless transmission system over 300 km standard single-mode fiber(SSMF). In the system design, two distributed Raman amplifiers(DRAs) were used to improve the signal level propagated along the 300 km SSMF. The co-propagating DRA provided 15 dB on–off gain and the counter-propagating produced 32 dB on–off gain at the signal wavelength. The experiment results show that the post-compensation configuration achieves an optimal performance with a bit error rate at 1 × 10-9.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA014200)the National Natural Science Foundation of China(No.11444001)the Municipal Natural Science Foundation of Tianjin(No.14JCYBJC16500)
文摘An optical fiber magnetic field sensor for the dual-parameter simultaneous measurement is proposed and demonstrated. The sensor head is constructed by a peanut-shape structure and long period fiber grating(LPFG) coated by magnetic fluid(MF). The external magnetic field intensity can be measured by the variation of characteristic wavelength(Dip1 and Dip2) in interference spectrum since the effective refractive index of MF changes with external magnetic field intensity. When the external magnetic field intensity changes from 0 mT to 20 mT, the magnetic field sensitivities of Dip1 and Dip2 are -0.064 nm/mT and -0.041 nm/mT, respectively. Experimental results show that the temperature sensitivities of the Dip1 and Dip2 are 0.233 nm/℃ and 0.186 nm/°C, respectively. Therefore, the simultaneous measurement of the magnetic field intensity and temperature is demonstrated based on the sensitive matrix. It has some potential applications in aerospace, environmental monitoring and medical sensing fields.
基金partially supported by the National Natural Science Foundation of China under Grant Nos.61674072,61565011,and 51304097
文摘In this Letter,we demonstrate a 1×4 low-crosstalk silicon photonics cascaded arrayed waveguide grating,which is fabricated on a silicon-on-insulator wafer with a 220-nm-thick top silicon layer and a 2μm buried oxide layer.The measured on-chip transmission loss of this cascaded arrayed waveguide grating is~4.0 dB,and the fiber-towaveguide coupling loss is 1.8 dB/facet.The measured channel spacing is 6.4 nm.The adjacent crosstalk by characterization is very low,only -33.2 dB.Compared to the normal single silicon photonics arrayed waveguide grating with a crosstalk of ~-12.5 dB,the crosstalk of more than 20 dB is dramatically improved in this cascaded device.
基金supported by the National Instrumentation Program of China(No.2013YQ030915)the National Natural Science Foundation of China(Nos.61227011,61378043,61505139,61475114,and 11004150)+3 种基金the Tianjin Natural Science Foundation(No.13JCYBJC16200)the Shenzhen Science and Technology Research Project(No.JCYJ20120831153904083)the National Basic Research Program of China(No.2010CB327802)the Soft Science Research and Development Project of the Ministry of Housing and Urban-Rural Development of China(No.2016-K4-087)
文摘A new wavelength division multiplexing method for fiber Bragg grating(FBG) sensors based on spectrum profile identification is proposed. In this method, FBGs and tilted FBG(TFBG) sensors are cascaded in a single fiber in one sensing channel. The different spectrum profiles enable the cross-correlation method to demodulate the wavelength. Therefore, the different types of sensors can occupy the same central wavelength band. Using this method, the multiplexing capacity is optimized. Experiment results demonstrate the feasibility of this method and it is useful for applications where large numbers of FBGs are needed.
基金supported by the National Natural Science Foundation of China(No.60777020)the Hubei Provincial Natural Science Foundation of China(No.2008CDB317)the Innovation Project of Hubei Provincial Department of Education of China(No.2012344/104892013043)
文摘A novel dual-wavelength fiber laser with asymmetric fiber Bragg grating(FBG) Fabry-Perot(FP) cavity is proposed and experimentally demonstrated. A couple of uniform FBGs are used as the cavity mirrors, and the third FBG is used as intracavity wavelength selector by changing its operation temperature. Experimental results show that by adjusting the operation temperature of the intracavity wavelength selector, a tunable dual-wavelength laser emission can be achieved. The results demonstrate the new concept of dual-wavelength lasing with asymmetric FBG FP resonator and its technical feasibility.
基金supported by the National High Technology Research and Development Program of China(No.2013AA014201)the Tianjin Youth Science Foundation(No.13JCQNJC01800)
文摘A switchable dual-wavelength erbium-doped fiber laser(EDFL) with tunable wavelength is demonstrated. The ring cavity consists of two branches with a fiber Bragg grating(FBG) and a spherical-shape structure as fiber filters, respectively. By adjusting the variable optical attenuator(VOA), the laser can be switched between the single-wavelength mode and the dual-wavelength mode. The spherical-shape structure has good sensitivity to the temperature. When the temperature changes from 30 °C to 190 °C, the central wavelength of the EDFL generated by the branch of spherical-shape structure varies from 1 551.6 nm to 1 561.8 nm, which means that the wavelength interval is tunable.
基金supported by the National Natural Science Foundation of China(No.61471185)the Joint Special Fund of Shandong Province Natural Science Foundation(No.ZR2013FL008)the Project of Shandong Province Higher Educational Science and Technology Program(No.J14LN20)
文摘An adaptive tensor voting algorithm combined with texture spectrum is proposed. The image texture spectrum is used to get the adaptive scale parameter of voting field. Then the texture information modifies both the attenuation coefficient and the attenuation field so that we can use this algorithm to create more significant and correct structures in the original image according to the human visual perception. At the same time, the proposed method can improve the edge extraction quality, which includes decreasing the flocculent region efficiently and making image clear. In the experiment for extracting pavement cracks, the original pavement image is processed by the proposed method which is combined with the significant curve feature threshold procedure, and the resulted image displays the faint crack signals submerged in the complicated background efficiently and clearly.