Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c...Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems....A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems.The system consists of a Buck/Boost+CLLLC cascaded converter as a submodule,which is combined in series and parallel on the input and output sides to achieve direct-current(DC)voltage transformation,bidirectional energy flow,and electrical isolation.The CLLLC converter operates in DC transformer mode in the submodule,while the Buck/Boost converter participates in voltage regulation.This article establishes a suitable mathematical model for the proposed system topology,and uses MPC to control the system based on this mathematical model.Module parameters are designed and calculated,and simulation is built in MATLAB/Simulink to complete the simulation comparison experiment between MPC and traditional proportional integral(PI)control.Finally,a physical experimental platform is built to complete the physical comparison experiment.The simulation and physical experimental results prove that the control accuracy and response speed ofMPC are better than traditional PI control strategy.展开更多
Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors wi...Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors within the CHBI, including both the dc-link capacitors and SCs. Balance control over the dc-link capacitor voltages is realized by the dcdc stage in each submodule(SM), while a hybrid modulation strategy(HMS) is implemented in the H-bridge to balance the SC voltages among the SMs. Meanwhile, the dc-link voltage fluctuations are analyzed under the HMS. A virtual voltage variable is introduced to coordinate the balancing of dc-link capacitor voltages and SC voltages. Compared to the balancing method that solely considers the SC voltages, the presented method reduces the dc-link voltage fluctuations without affecting the voltage balance of SCs. Finally, both simulation and experimental results verify the effectiveness of the presented method.展开更多
The paper proposes a new method of equal switching distribution that can be applied to cascaded multi-level inverters. This method is based on the fact that in the cascaded multilevel inverters, the output phase volta...The paper proposes a new method of equal switching distribution that can be applied to cascaded multi-level inverters. This method is based on the fact that in the cascaded multilevel inverters, the output phase voltage is the sum of voltage waveforms produced by all cascaded cells. By periodically exchanging cells’ voltage waveforms, the proposed method ensures equal average switchings distribution between all cascaded cells. This method is applied to the 13-level inverter, which consists of three cascaded 5-level H-bridge cells per phase. However, the proposed method can be extended to any desired number of voltage levels and applied to any type of cascaded multi-level inverter. Extensive simulation results of the tested 13-level inverter with the equal switching distribution are presented. Moreover, the proposed method is compared to the standard control approaches and its advantages are shown.展开更多
We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc...We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.展开更多
Tunable coherent emission is generated in a single-pass, cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN). Three ranges of wavelength, includin...Tunable coherent emission is generated in a single-pass, cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN). Three ranges of wavelength, including visible output from 628 nm to 639 nm, near-infrared output from 797 nm to 816 nm, and mid-infrared output from 3167 nm to 3459 nm,were obtained from the monolithic PPLN, which consists of a 10-mm section for 532-nm-pumped optical parametric generation(OPG) and a 7-mm section for 1064-nm-pumped sum frequency generation(SFG). A pump-to-signal conversion efficiency of 23.4% for OPG at 50°C and a quantum efficiency of 26.2% for SFG at 200°C were obtained.展开更多
A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber,instead of the previous copper chambers,to provide better diagnostic observation and access to the p...A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber,instead of the previous copper chambers,to provide better diagnostic observation and access to the plasma optical emission.The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path.A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas,which have been investigated by utilizing optical emission spectroscopy(OES) and Langmuir probe.In the experiments,discharge currents from 50 A to 100 A,argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen.The results show:(a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as η∝ j^(-0.63369) and the power dissipated in the arc has a strong relation with the filling factor;(b) through the quartz,the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm,which are the emissions of Ar^+-434.81 nm and Ar^+-442.60 nm line,and theintensities are increasing with the arc current and decreasing with the inlet argon flow rate;and(c) the electron density and temperature can reach 2.0 × 10^19 m^-3 and 0.48 eV,respectively,under the conditions of an arc current of 90 A and a magnetic field of 0.2 T.The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments.展开更多
Present day power scenarios demand a high quality uninterrupted power supply and needs environmental issues to be addressed. Both concerns can be dealt with by the introduction of the renewable sources to the existing...Present day power scenarios demand a high quality uninterrupted power supply and needs environmental issues to be addressed. Both concerns can be dealt with by the introduction of the renewable sources to the existing power system. Thus, automatic generation control(AGC) with diverse renewable sources and a modified-cascaded controller are presented in the paper.Also, a new hybrid scheme of the improved teaching learning based optimization-differential evolution(hITLBO-DE) algorithm is applied for providing optimization of controller parameters. A study of the system with a technique such as TLBO applied to a proportional integral derivative(PID), integral double derivative(IDD) and PIDD is compared to hITLBO-DE tuned cascaded controller with dynamic load change.The suggested methodology has been extensively applied to a 2-area system with a diverse source power system with various operation time non-linearities such as dead-band of, generation rate constraint and reheat thermal units. The multi-area system with reheat thermal plants, hydel plants and a unit of a wind-diesel combination is tested with the cascaded controller scheme with a different controller setting for each area. The variation of the load is taken within 1% to 5% of the connected load and robustness analysis is shown by modifying essential factors simultaneously by± 30%. Finally, the proposed scheme of controller and optimization technique is also tested with a 5-equal area thermal system with non-linearities. The simulation results demonstrate the superiority of the proposed controller and algorithm under a dynamically changing load.展开更多
As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and elec...As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering(LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5?×10^19m^-3 to7.1?×10^20m^-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison,an optical emission spectroscopy(OES) system was established as well. The results showed that the electron excitation temperature(configuration temperature) measured by OES is significantly higher than the electron temperature(kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium(LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.展开更多
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ...With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.展开更多
An ultra-broadband perfect absorber consisting of cascaded nanodisk arrays is demonstrated by placing insulatormetal-insulator-metal nanodisks on insulator-metal film stacks.The absorber shows over 90% absorption in a...An ultra-broadband perfect absorber consisting of cascaded nanodisk arrays is demonstrated by placing insulatormetal-insulator-metal nanodisks on insulator-metal film stacks.The absorber shows over 90% absorption in a wavelength range between 600 nm and 4000 nm under transverse magnetic(TM) polarization,with an average absorptivity of 91.5%and a relative absorption bandwidth of 147.8%.The analysis of the electric field and magnetic field show that the synergy of localized surface plasmons,propagating surface plasmons,and plasmonic resonant cavity modes leads to the ultrabroadband perfect absorption,which accords well with the results of impedance-matched analysis.The influences of structural parameters and different metal materials on absorption performance are discussed.Furthermore,the absorber is polarization-independent,and the absorption remains more than 90% at a wide incident angle up to 400 under TE polarization and TM polarization.The designed ultra-broadband absorber has promising prospects in photoelectric detection and imaging.展开更多
Effective information fusion is very important in hybrid source localization. In this paper, the performance analysis of conventional joint direction of arrival(DOA) and time difference of arrival(TDOA) system is deri...Effective information fusion is very important in hybrid source localization. In this paper, the performance analysis of conventional joint direction of arrival(DOA) and time difference of arrival(TDOA) system is derived and it is shown that this hybrid system may inferior to the single system when the ratio of angular measurements error to distance measurements error exceeds a threshold. To avoid this problem, an effective DOA/TDOA adaptive cascaded(DTAC) technique is presented. The rotation feature of UAVs and spatial filtering technique are applied to gain the signal-to-noise ratio(SNR), which leads to more accurate estimation of time delay by using DOAs. Nevertheless, the time delay estimation precision is still limited by the sampling frequency, which is constrained by the finite load of UAV. To break through the limitation, an enhanced self-delay-compensation(SDC) method is proposed, which aims at detecting the overlooked time delay within the sampling interval by adding a tiny time delay. Finally, the position of the source is estimated by the Chan algorithm. Compared to DOA-only algorithm, TDOA-only algorithm and joint DOA/TDOA(JDT) algorithm, the proposed method shows better localization accuracy regardless of different SNRs and sampling frequencies. Numerical simulations are presented to validate the effectiveness and robustness of the proposed algorithm.展开更多
In order to control the working wavelength range of the fiber surface plasmon resonance(SPR)temperature sensor and realize the wavelength division multiplexing type multi-channel fiber SPR temperature sensor,by compre...In order to control the working wavelength range of the fiber surface plasmon resonance(SPR)temperature sensor and realize the wavelength division multiplexing type multi-channel fiber SPR temperature sensor,by comprehensively investigating the influence of liquids with different thermal-optical coefficients and solid packaging materials on the performance of fiber SPR temperature sensor,a dual-channel fiber SPR temperature sensor based on liquid-solid cascade encapsulation was designed and fabricated.The liquid temperature sensing stage encapsulated in capillary worked in 616.03 nm-639.05 nm band,the solid sensing stage coated with pouring sealant worked in 719.37 nm-825.27 nm band,and the two stages were cascaded to form a fiber dual-channel temperature sensor.The testing results indicated that when the temperature range was 35℃-95℃,the sensitivity of two-stage temperature detection was−0.384 nm/℃and−1.765 nm/℃respectively.The proposed fiber sensor has simple fabrication and excellent performance which can be widely used in various fields of dual-channel temperature measurement and temperature compensation.展开更多
On the basis of fractional wavelet transform, we propose a new method called cascaded fractional wavelet transform to encrypt images. It has the virtues of fractional Fourier transform and wavelet transform. Fractiona...On the basis of fractional wavelet transform, we propose a new method called cascaded fractional wavelet transform to encrypt images. It has the virtues of fractional Fourier transform and wavelet transform. Fractional orders, standard focal lengths and scaling factors are its keys. Multistage fractional Fourier transforms can add the keys easily and strengthen information se-curity. This method can also realize partial encryption just as wavelet transform and fractional wavelet transform. Optical reali-zation of encryption and decryption is proposed. Computer simulations confirmed its possibility.展开更多
This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and...This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and depicts the behavior of handwritten curve more reliably in terms of the statistic probability. Hence character segmentation and labeling are unnecessary. Viterbi algorithm is integrated in the cascaded HMM after the whole sample sequence of a HCC is input. More than 26,000 component samples are used tor training 407 handwritten component HMMs. At the improved training stage 94 models of 94 Chinese characters are gained by 32,000 samples, Compared with the Segment HMMs approach, the recognition rate of this model tier the tirst candidate is 87.89% and the error rate could be reduced by 12.4%.展开更多
基金The authors acknowledge the funding provided by the National Key R&D Program of China(2021YFA1401200)Beijing Outstanding Young Scientist Program(BJJWZYJH01201910007022)+2 种基金National Natural Science Foundation of China(No.U21A20140,No.92050117,No.62005017)programBeijing Municipal Science&Technology Commission,Administrative Commission of Zhongguancun Science Park(No.Z211100004821009)This work was supported by the Synergetic Extreme Condition User Facility(SECUF).
文摘Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金supported by the National Key Research and Development Plan,Grant/Award Number:2018YFB1503005.
文摘A modular system of cascaded converters based on model predictive control(MPC)is proposed to meet the application requirements ofmultiple voltage levels and electrical isolation in renewable energy generation systems.The system consists of a Buck/Boost+CLLLC cascaded converter as a submodule,which is combined in series and parallel on the input and output sides to achieve direct-current(DC)voltage transformation,bidirectional energy flow,and electrical isolation.The CLLLC converter operates in DC transformer mode in the submodule,while the Buck/Boost converter participates in voltage regulation.This article establishes a suitable mathematical model for the proposed system topology,and uses MPC to control the system based on this mathematical model.Module parameters are designed and calculated,and simulation is built in MATLAB/Simulink to complete the simulation comparison experiment between MPC and traditional proportional integral(PI)control.Finally,a physical experimental platform is built to complete the physical comparison experiment.The simulation and physical experimental results prove that the control accuracy and response speed ofMPC are better than traditional PI control strategy.
基金supported in part by the CAS Project for Young Scientists in Basic Research under Grant No. YSBR-045the Youth Innovation Promotion Association CAS under Grant 2022137the Institute of Electrical Engineering CAS under Grant E155320101。
文摘Cascaded H-bridge inverter(CHBI) with supercapacitors(SCs) and dc-dc stage shows significant promise for medium to high voltage energy storage applications. This paper investigates the voltage balance of capacitors within the CHBI, including both the dc-link capacitors and SCs. Balance control over the dc-link capacitor voltages is realized by the dcdc stage in each submodule(SM), while a hybrid modulation strategy(HMS) is implemented in the H-bridge to balance the SC voltages among the SMs. Meanwhile, the dc-link voltage fluctuations are analyzed under the HMS. A virtual voltage variable is introduced to coordinate the balancing of dc-link capacitor voltages and SC voltages. Compared to the balancing method that solely considers the SC voltages, the presented method reduces the dc-link voltage fluctuations without affecting the voltage balance of SCs. Finally, both simulation and experimental results verify the effectiveness of the presented method.
文摘The paper proposes a new method of equal switching distribution that can be applied to cascaded multi-level inverters. This method is based on the fact that in the cascaded multilevel inverters, the output phase voltage is the sum of voltage waveforms produced by all cascaded cells. By periodically exchanging cells’ voltage waveforms, the proposed method ensures equal average switchings distribution between all cascaded cells. This method is applied to the 13-level inverter, which consists of three cascaded 5-level H-bridge cells per phase. However, the proposed method can be extended to any desired number of voltage levels and applied to any type of cascaded multi-level inverter. Extensive simulation results of the tested 13-level inverter with the equal switching distribution are presented. Moreover, the proposed method is compared to the standard control approaches and its advantages are shown.
基金Research on Control Methods and Fault Tolerance of Multilevel Electronic Transformers for PV Access(Project number:042300034204)Research on Open-Circuit Fault Diagnosis and Seamless Fault-Tolerant Control of Multiple Devices in Modular Multilevel Digital Power Amplifiers(Project number:202203021212210)Research on Key Technologies and Demonstrations of Low-Voltage DC Power Electronic Converters Based on SiC Devices Access(Project number:202102060301012)。
文摘We designed an improved direct-current capacitor voltage balancing control model predictive control(MPC)for single-phase cascaded H-bridge multilevel photovoltaic(PV)inverters.Compared with conventional voltage balanc-ing control methods,the method proposed could make the PV strings of each submodule operate at their maximum power point by independent capacitor voltage control.Besides,the predicted and reference value of the grid-connected current was obtained according to the maximum power output of the maximum power point tracking.A cost function was con-structed to achieve the high-precision grid-connected control of the CHB inverter.Finally,the effectiveness of the proposed control method was verified through a semi-physical simulation platform with three submodules.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB632704)
文摘Tunable coherent emission is generated in a single-pass, cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN). Three ranges of wavelength, including visible output from 628 nm to 639 nm, near-infrared output from 797 nm to 816 nm, and mid-infrared output from 3167 nm to 3459 nm,were obtained from the monolithic PPLN, which consists of a 10-mm section for 532-nm-pumped optical parametric generation(OPG) and a 7-mm section for 1064-nm-pumped sum frequency generation(SFG). A pump-to-signal conversion efficiency of 23.4% for OPG at 50°C and a quantum efficiency of 26.2% for SFG at 200°C were obtained.
基金supported by the International Thermonuclear Experimental Reactor(ITER)Program Special of Ministry of Science and Technology(No.2013GB114003)National Natural Science Foundation of China(Nos.11275135,11475122)
文摘A single cathode with a cascaded bias voltage arc plasma source has been developed with a new quartz cathode chamber,instead of the previous copper chambers,to provide better diagnostic observation and access to the plasma optical emission.The cathode chamber cooling scheme is also modified to be naturally cooled only by light emission without cooling water to improve the optical thin performance in the optical path.A single-parameter physical model has been developed to describe the power dissipated in the cascaded bias voltage arc discharge argon plasmas,which have been investigated by utilizing optical emission spectroscopy(OES) and Langmuir probe.In the experiments,discharge currents from 50 A to 100 A,argon flow rates from 800 sccm to 2000 sccm and magnetic fields of 0.1 T and 0.2 T were chosen.The results show:(a) the relationship between the averaged resistivity and the averaged current density exhibits an empirical scaling law as η∝ j^(-0.63369) and the power dissipated in the arc has a strong relation with the filling factor;(b) through the quartz,the argon ions optical emission lines have been easily observed and are dominating with wavelengths between 340 nm and 520 nm,which are the emissions of Ar^+-434.81 nm and Ar^+-442.60 nm line,and theintensities are increasing with the arc current and decreasing with the inlet argon flow rate;and(c) the electron density and temperature can reach 2.0 × 10^19 m^-3 and 0.48 eV,respectively,under the conditions of an arc current of 90 A and a magnetic field of 0.2 T.The half-width of the ne radial profile is approximatively equal to a few Larmor radii of electrons and can be regarded as the diameter of the plasma jet in the experiments.
文摘Present day power scenarios demand a high quality uninterrupted power supply and needs environmental issues to be addressed. Both concerns can be dealt with by the introduction of the renewable sources to the existing power system. Thus, automatic generation control(AGC) with diverse renewable sources and a modified-cascaded controller are presented in the paper.Also, a new hybrid scheme of the improved teaching learning based optimization-differential evolution(hITLBO-DE) algorithm is applied for providing optimization of controller parameters. A study of the system with a technique such as TLBO applied to a proportional integral derivative(PID), integral double derivative(IDD) and PIDD is compared to hITLBO-DE tuned cascaded controller with dynamic load change.The suggested methodology has been extensively applied to a 2-area system with a diverse source power system with various operation time non-linearities such as dead-band of, generation rate constraint and reheat thermal units. The multi-area system with reheat thermal plants, hydel plants and a unit of a wind-diesel combination is tested with the cascaded controller scheme with a different controller setting for each area. The variation of the load is taken within 1% to 5% of the connected load and robustness analysis is shown by modifying essential factors simultaneously by± 30%. Finally, the proposed scheme of controller and optimization technique is also tested with a 5-equal area thermal system with non-linearities. The simulation results demonstrate the superiority of the proposed controller and algorithm under a dynamically changing load.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB109005)the Fundamental Research Funds for the Central Universities(Nos.DUT15RC(3)072,DUT15TD44,DUT16TD13)
文摘As advanced linear plasma sources, cascaded arc plasma devices have been used to generate steady plasma with high electron density, high particle flux and low electron temperature. To measure electron density and electron temperature of the plasma device accurately, a laser Thomson scattering(LTS) system, which is generally recognized as the most precise plasma diagnostic method, has been established in our lab in Dalian University of Technology. The electron density has been measured successfully in the region of 4.5?×10^19m^-3 to7.1?×10^20m^-3 and electron temperature in the region of 0.18 eV to 0.58 eV. For comparison,an optical emission spectroscopy(OES) system was established as well. The results showed that the electron excitation temperature(configuration temperature) measured by OES is significantly higher than the electron temperature(kinetic electron temperature) measured by LTS by up to 40% in the given discharge conditions. The results indicate that the cascaded arc plasma is recombining plasma and it is not in local thermodynamic equilibrium(LTE). This leads to significant error using OES when characterizing the electron temperature in a non-LTE plasma.
基金This work was supported by National Natural Science Foundation of China under Grant U1909201,Distributed active learning theory and method for operational situation awareness of active distribution network.
文摘With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775140 and 62005165)。
文摘An ultra-broadband perfect absorber consisting of cascaded nanodisk arrays is demonstrated by placing insulatormetal-insulator-metal nanodisks on insulator-metal film stacks.The absorber shows over 90% absorption in a wavelength range between 600 nm and 4000 nm under transverse magnetic(TM) polarization,with an average absorptivity of 91.5%and a relative absorption bandwidth of 147.8%.The analysis of the electric field and magnetic field show that the synergy of localized surface plasmons,propagating surface plasmons,and plasmonic resonant cavity modes leads to the ultrabroadband perfect absorption,which accords well with the results of impedance-matched analysis.The influences of structural parameters and different metal materials on absorption performance are discussed.Furthermore,the absorber is polarization-independent,and the absorption remains more than 90% at a wide incident angle up to 400 under TE polarization and TM polarization.The designed ultra-broadband absorber has promising prospects in photoelectric detection and imaging.
基金co-supported by China Scholarship Council(201806830081)National science foundation of China(61827801,61371169,61601167,61601504)+3 种基金Jiangsu NSF(BK20161489)the open research fund of State Key Laboratory of Millimeter Waves,Southeast University(No.K201826)the Fundamental Research Funds for the Central Universities(NO.NE2017103and NT2019013)the postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX18_0293).
文摘Effective information fusion is very important in hybrid source localization. In this paper, the performance analysis of conventional joint direction of arrival(DOA) and time difference of arrival(TDOA) system is derived and it is shown that this hybrid system may inferior to the single system when the ratio of angular measurements error to distance measurements error exceeds a threshold. To avoid this problem, an effective DOA/TDOA adaptive cascaded(DTAC) technique is presented. The rotation feature of UAVs and spatial filtering technique are applied to gain the signal-to-noise ratio(SNR), which leads to more accurate estimation of time delay by using DOAs. Nevertheless, the time delay estimation precision is still limited by the sampling frequency, which is constrained by the finite load of UAV. To break through the limitation, an enhanced self-delay-compensation(SDC) method is proposed, which aims at detecting the overlooked time delay within the sampling interval by adding a tiny time delay. Finally, the position of the source is estimated by the Chan algorithm. Compared to DOA-only algorithm, TDOA-only algorithm and joint DOA/TDOA(JDT) algorithm, the proposed method shows better localization accuracy regardless of different SNRs and sampling frequencies. Numerical simulations are presented to validate the effectiveness and robustness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(Grant No.61705025)the Natural Science Foundation of Heilongjiang Province,China(Grant No.F2018027)+3 种基金partially supported by Chongqing Natural Science Foundation(Grant Nos.cstc2019jcyj-msxmX0431 and cstc2018jcyjAX0817)the Science and Technology Project Affiliated to the Education Department of Chongqing Municipality(Grant Nos.KJQN201801217,KJQN201901226,and KJ1710247)Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area(Grant Nos.ZD2020A0103 and ZD2020A0102)the Fundamental Research Funds for Chongqing Three Gorges University of China(Grant No.19ZDPY08).
文摘In order to control the working wavelength range of the fiber surface plasmon resonance(SPR)temperature sensor and realize the wavelength division multiplexing type multi-channel fiber SPR temperature sensor,by comprehensively investigating the influence of liquids with different thermal-optical coefficients and solid packaging materials on the performance of fiber SPR temperature sensor,a dual-channel fiber SPR temperature sensor based on liquid-solid cascade encapsulation was designed and fabricated.The liquid temperature sensing stage encapsulated in capillary worked in 616.03 nm-639.05 nm band,the solid sensing stage coated with pouring sealant worked in 719.37 nm-825.27 nm band,and the two stages were cascaded to form a fiber dual-channel temperature sensor.The testing results indicated that when the temperature range was 35℃-95℃,the sensitivity of two-stage temperature detection was−0.384 nm/℃and−1.765 nm/℃respectively.The proposed fiber sensor has simple fabrication and excellent performance which can be widely used in various fields of dual-channel temperature measurement and temperature compensation.
基金Project (No. 10276034) supported by the National Natural ScienceFoundation of China
文摘On the basis of fractional wavelet transform, we propose a new method called cascaded fractional wavelet transform to encrypt images. It has the virtues of fractional Fourier transform and wavelet transform. Fractional orders, standard focal lengths and scaling factors are its keys. Multistage fractional Fourier transforms can add the keys easily and strengthen information se-curity. This method can also realize partial encryption just as wavelet transform and fractional wavelet transform. Optical reali-zation of encryption and decryption is proposed. Computer simulations confirmed its possibility.
文摘This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and depicts the behavior of handwritten curve more reliably in terms of the statistic probability. Hence character segmentation and labeling are unnecessary. Viterbi algorithm is integrated in the cascaded HMM after the whole sample sequence of a HCC is input. More than 26,000 component samples are used tor training 407 handwritten component HMMs. At the improved training stage 94 models of 94 Chinese characters are gained by 32,000 samples, Compared with the Segment HMMs approach, the recognition rate of this model tier the tirst candidate is 87.89% and the error rate could be reduced by 12.4%.