A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the t...A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the three-dimensional Reynoldsaveraged Navier-Stokes equations(RANS),the renormalization group(RNG)k-εturbulence model,suspended and bed load transport equations,and the instability discriminant formula of dam breach side slope,and the explicit finite volume method(FVM),a detailed numerical simulation model for calculating the hydro-morphodynamic characteristics of cascading dam breach process has been developed.The developed numerical model can simulate the breach hydrograph and the dam breach morphology evolution during the cascading failure process of landslide dams.A model test of the breaches of two cascading landslide dams has been used as the validation case.The comparison of the calculated and measured results indicates that the breach hydrograph and the breach morphology evolution process of the upstream and downstream dams are generally consistent with each other,and the relative errors of the key breaching parameters,i.e.,the peak breach flow and the time to peak of each dam,are less than±5%.Further,the comparison of the breach hydrographs of the upstream and downstream dams shows that there is an amplification effect of the breach flood on the cascading landslide dam failures.Three key parameters,i.e.,the distance between the upstream and the downstream dams,the river channel slope,and the downstream dam height,have been used to study the flood amplification effect.The parameter sensitivity analyses show that the peak breach flow at the downstream dam decreases with increasing distance between the upstream and the downstream dams,and the downstream dam height.Further,the peak breach flow at the downstream dam first increases and then decreases with steepening of the river channel slope.When the flood caused by the upstream dam failure flows to the downstream dam,it can produce a surge wave that overtops and erodes the dam crest,resulting in a lowering of the dam crest elevation.This has an impact on the failure occurrence time and the peak breach flow of the downstream dam.The influence of the surge wave on the downstream dam failure process is related to the volume of water that overtops the dam crest and the erosion characteristics of dam material.Moreover,the cascading failure case of the Xiaogangjian and Lower Xiaogangjian landslide dams has also been used as the representative case for validating the model.In comparisons of the calculated and measured breach hydrographs and final breach morphologies,the relative errors of the key dam breaching parameters are all within±10%,which verify the rationality of the model is applicable to real-world cases.Overall,the numerical model developed in this study can provide important technical support for the risk assessment and emergency treatment of failures of cascading landslide dams.展开更多
In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back proj...In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.展开更多
To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according...To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according to the previous experimental study on treble-pillar specimens,e.g.successive failure mode(SFM),domino failure mode(DFM)and compound failure mode(CFM).Based on the finite element code rock failure process analysis(RFPA^(2D)),numerical models of treble-pillar specimen with different mechanical properties were established to reproduce and verify the experimental results of the three CPF modes.Numerical results show that the elastic rebound of roofefloor system induced by pillar instability causes dynamic disturbance to adjacent pillars,resulting in sudden load increases and sudden jump displacement of adjacent pillars.The phenomena of load transfer in the roofemulti-pillarefloor system,as well as the induced accelerated damage behavior in adjacent pillars,were discovered and studied.In addition,based on the catastrophe theory and the proposed mechanical model of treble-pillar specimen edisc spring group system,a potential function that characterizes the evolution characteristics of roof emulti-pillarefloor system was established.The analytical expressions of sudden jump and energy release of treble-pillar specimenedisc spring group system of the three CPF modes were derived according to the potential function.The numerical and theoretical results show good agreement with the experimental results.This study further reveals the physical essence of load transfer during CPF of roof emulti-pillarefloor system,which provides references for mine design,construction and disaster prevention.展开更多
Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat t...Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.展开更多
In recent times,the impact of typhoon disasters on integrated energy active distribution networks(IEADNs)has received increasing attention,particularly,in terms of effective cascading fault path prediction and enhance...In recent times,the impact of typhoon disasters on integrated energy active distribution networks(IEADNs)has received increasing attention,particularly,in terms of effective cascading fault path prediction and enhanced fault recovery performance.In this study,we propose a modified ORNL-PSerc-Alaska(OPA)model based on optimal power flow(OPF)calculation to forecast IEADN cascading fault paths.We first established the topology and operational model of the IEADNs,and the typical fault scenario was chosen according to the component fault probability and information entropy.The modified OPA model consisted of two layers:An upper-layer model to determine the cascading fault location and a lower-layer model to calculate the OPF by using Yalmip and CPLEX and provide the data to update the upper-layer model.The approach was validated via the modified IEEE 33-node distribution system and two real IEADNs.Simulation results showed that the fault trend forecasted by the novel OPA model corresponded well with the development and movement of the typhoon above the IEADN.The proposed model also increased the load recovery rate by>24%compared to the traditional OPA model.展开更多
Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading fau...Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method.展开更多
Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and com...Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and community heterogeneity.A novel node influence ranking method,community-based Clustering-LeaderRank(CCL)algorithm,is first proposed to identify influential nodes in community networks.Simulation results show that the CCL method can effectively identify the influence of nodes.Based on node influence,a new cascading failure model with heterogeneous redistribution strategy is proposed to describe and analyze node fault propagation in community networks.Analytical and numerical simulation results on cascading failure show that the community attribute has an important influence on the cascading failure process.The network robustness against cascading failures increases when the load is more distributed to neighbors of the same community instead of different communities.When the initial load distribution and the load redistribution strategy based on the node influence are the same,the network shows better robustness against node failure.展开更多
At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for ident...At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for identifying high-risk scenarios of interlocking faults in new energy power grids based on a deep embedding clustering(DEC)algorithm and apply it in a risk assessment of cascading failures in different operating scenarios for new energy power grids.First,considering the real-time operation status and system structure of new energy power grids,the scenario cascading failure risk indicator is established.Based on this indicator,the risk of cascading failure is calculated for the scenario set,the scenarios are clustered based on the DEC algorithm,and the scenarios with the highest indicators are selected as the significant risk scenario set.The results of simulations with an example power grid show that our method can effectively identify scenarios with a high risk of cascading failures from a large number of scenarios.展开更多
This paper discusses the primary causes from the point of synergistic effects to improve power system vulnerability in the power system planning and safety operation. Based on the vulnerability conception in the compl...This paper discusses the primary causes from the point of synergistic effects to improve power system vulnerability in the power system planning and safety operation. Based on the vulnerability conception in the complex network theory the vulnerability of the power system can be evaluated by the minimum load loss rate when considering power supply ability.Consequently according to the synergistic effect theory the critical line of the power system is defined by its influence on failure set vulnerability in N-k contingencies.The cascading failure modes are proposed based on the criterion whether the acceptable load curtailment level is below a preset value.Significant conclusions are revealed by results of IEEE 39 case analysis weak points of power networks and heavy load condition are the main causes of large-scale cascading failures damaging synergistic effects can result in partial failure developed into large-scale cascading failures vulnerable lines of power systems can directly lead the partial failure to deteriorate into a large blackout while less vulnerable lines can cause a large-scale cascading failure.展开更多
Cascading failures are common phenomena in many of real-world networks,such as power grids,Internet,transportation networks and social networks.It's worth noting that once one or a few users on a social network ar...Cascading failures are common phenomena in many of real-world networks,such as power grids,Internet,transportation networks and social networks.It's worth noting that once one or a few users on a social network are unavailable for some reasons,they are more likely to influence a large portion of social network.Therefore,an effective mitigation strategy is very critical for avoiding or reducing the impact of cascading failures.In this paper,we firstly quantify the user loads and construct the processes of cascading dynamics,then elaborate the more reasonable mechanism of sharing the extra user loads with considering the features of social networks,and further propose a novel mitigation strategy on social networks against cascading failures.Based on the realworld social network datasets,we evaluate the effectiveness and efficiency of the novel mitigation strategy.The experimental results show that this mitigation strategy can reduce the impact of cascading failures effectively and maintain the network connectivity better with lower cost.These findings are very useful for rationally advertising and may be helpful for avoiding various disasters of cascading failures on many real-world networks.展开更多
The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in...The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in LW network models with different LW sizes were investigated using the cascading failures load model. We found that the LW size has a significant impact on the network's robustness against deliberate attacks. It is much easier to trigger cascading failures in LW evolving networks with a larger LW size. Therefore, to avoid cascading failures in real networks with local preferential attachment such as the Internet, the World Trade Web and the multi-agent system, the LW size should be as small as possible.展开更多
With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a ...With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a cascading failure, which completely fragments the network, necessitating recovery efforts to improve robustness of complex systems. Inspired by real-world scenarios, this paper proposes repair models after two kinds of network failures, namely complete and incomplete collapse. In both models, three kinds of repair strategies are possible, including random selection(RS), node selection based on single network node degree(SD), and node selection based on double network node degree(DD). We find that the node correlation in each of the two coupled networks affects repair efficiency. Numerical simulation and analysis results suggest that the repair node ratio and repair strategies may have a significant impact on the economics of the repair process. The results of this study thus provide insight into ways to improve the robustness of coupled networks after cascading failures.展开更多
Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading i...Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FH1T of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case.展开更多
Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies ...Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.展开更多
Based on the relationship between capacity and load, cascading failure on weighted complex networks is investigated, and a load-capacity optimal relationship (LCOR) model is proposed in this paper. Compared with thr...Based on the relationship between capacity and load, cascading failure on weighted complex networks is investigated, and a load-capacity optimal relationship (LCOR) model is proposed in this paper. Compared with three other kinds of load- capacity linear or non-linear relationship models in model networks as well as a number of real-world weighted networks including the railway network, the airports network and the metro network, the LCOR model is shown to have the best robustness against cascading failure with less cost. Furthermore, theoretical analysis and computational method of its cost threshold are provided to validate the effectiveness of the LCOR model. The results show that the LCOR model is effective for designing real-world networks with high robustness and less cost against cascading failure.展开更多
This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control func...This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control functions of a cyber network and power flow characteristics of a power network,a power cyber-physical system model is established.Then,the influences of a false data attack on the decision-making and control processes of the cyber network communication processes are studied,and a cascading failure analysis process is proposed for the cyber-attack environment.In addition,a vulnerability evaluation index is defined from two perspectives,i.e.,the topology integrity and power network operation characteristics.Moreover,the effectiveness of a power flow betweenness assessment for vulnerable nodes in the cyberphysical environment is verified based on comparing the node power flow betweenness and vulnerability assessment index.Finally,an IEEE14-bus power network is selected for constructing a power cyber-physical system.Simulations show that both the uplink communication channel and downlink communication channel suffer from false data attacks,which affect the ability of the cyber network to suppress the propagation of cascading failures,and expand the scale of the cascading failures.The vulnerability evaluation index is calculated for each node,so as to verify the effectiveness of identifying vulnerable nodes based on the power flow betweenness.展开更多
In order to rectify the problems that the com- ponent reliability model exhibits deviation, and the evalu- ation result is low due to the overlook of failure propagation in traditional reliability evaluation of machin...In order to rectify the problems that the com- ponent reliability model exhibits deviation, and the evalu- ation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influ- enced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure proba- bility function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree ofthe system component, which provides a theoretical basis for reliability allocation of machine center system.展开更多
In this article, we investigate cascading failures in complex networks by introducing a feedback. To characterize the effect of the feedback, we define a procedure that involves a self-organization of trip distributio...In this article, we investigate cascading failures in complex networks by introducing a feedback. To characterize the effect of the feedback, we define a procedure that involves a self-organization of trip distribution during the process of cascading failures. For this purpose, user equilibrium with variable demand is used as an alternative way to determine the traffic flow pattern throughout the network. Under the attack, cost function dynamics are introduced to discuss edge overload in complex networks, where each edge is assigned a finite capacity (controlled by parameter α). We find that scale-free networks without considering the effect of the feedback are expected to be very sensitive to α as compared with random networks, while this situation is largely improved after introducing the feedback.展开更多
This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology, where the fluxes exchanged between a pair of nodes can be adaptively adjusted dependin...This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology, where the fluxes exchanged between a pair of nodes can be adaptively adjusted depending on the changes of the shortest path lengths between them. The simulations on both an artificially created scale-free network and the real network structure of the power grid reveal that the adaptive adjustment of the fluxes can drastically enhance the robustness of complex networks against cascading failures. Particularly, there exists an optimal region where the propagation of the cascade is significantly suppressed and the fluxes supported by the network are maximal. With this understanding, a costless strategy of defense for preventing cascade breakdown is proposed. It is shown to be more effective for suppressing the propagation of the cascade than the recent proposed strategy of defense based on the intentional removal of nodes.展开更多
In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free t...In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U22A20602,U2040221).
文摘A cascading failure of landslide dams caused by strong earthquakes or torrential rains in mountainous river valleys can pose great threats to people’s lives,properties,and infrastructures.In this study,based on the three-dimensional Reynoldsaveraged Navier-Stokes equations(RANS),the renormalization group(RNG)k-εturbulence model,suspended and bed load transport equations,and the instability discriminant formula of dam breach side slope,and the explicit finite volume method(FVM),a detailed numerical simulation model for calculating the hydro-morphodynamic characteristics of cascading dam breach process has been developed.The developed numerical model can simulate the breach hydrograph and the dam breach morphology evolution during the cascading failure process of landslide dams.A model test of the breaches of two cascading landslide dams has been used as the validation case.The comparison of the calculated and measured results indicates that the breach hydrograph and the breach morphology evolution process of the upstream and downstream dams are generally consistent with each other,and the relative errors of the key breaching parameters,i.e.,the peak breach flow and the time to peak of each dam,are less than±5%.Further,the comparison of the breach hydrographs of the upstream and downstream dams shows that there is an amplification effect of the breach flood on the cascading landslide dam failures.Three key parameters,i.e.,the distance between the upstream and the downstream dams,the river channel slope,and the downstream dam height,have been used to study the flood amplification effect.The parameter sensitivity analyses show that the peak breach flow at the downstream dam decreases with increasing distance between the upstream and the downstream dams,and the downstream dam height.Further,the peak breach flow at the downstream dam first increases and then decreases with steepening of the river channel slope.When the flood caused by the upstream dam failure flows to the downstream dam,it can produce a surge wave that overtops and erodes the dam crest,resulting in a lowering of the dam crest elevation.This has an impact on the failure occurrence time and the peak breach flow of the downstream dam.The influence of the surge wave on the downstream dam failure process is related to the volume of water that overtops the dam crest and the erosion characteristics of dam material.Moreover,the cascading failure case of the Xiaogangjian and Lower Xiaogangjian landslide dams has also been used as the representative case for validating the model.In comparisons of the calculated and measured breach hydrographs and final breach morphologies,the relative errors of the key dam breaching parameters are all within±10%,which verify the rationality of the model is applicable to real-world cases.Overall,the numerical model developed in this study can provide important technical support for the risk assessment and emergency treatment of failures of cascading landslide dams.
基金supported by the National Key R&D Program of China(No.2022YFF0800601)National Scientific Foundation of China(Nos.41930103 and 41774047).
文摘In this study,the vertical components of broadband teleseismic P wave data recorded by China Earthquake Network are used to image the rupture processes of the February 6th,2023 Turkish earthquake doublet via back projection analysis.Data in two frequency bands(0.5-2 Hz and 1-3 Hz)are used in the imaging processes.The results show that the rupture of the first event extends about 200 km to the northeast and about 150 km to the southwest,lasting~90 s in total.The southwestern rupture is triggered by the northeastern rupture,demonstrating a sequential bidirectional unilateral rupture pattern.The rupture of the second event extends approximately 80 km in both northeast and west directions,lasting~35 s in total and demonstrates a typical bilateral rupture feature.The cascading ruptures on both sides also reflect the occurrence of selective rupture behaviors on bifurcated faults.In addition,we observe super-shear ruptures on certain fault sections with relatively straight fault structures and sparse aftershocks.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFC2903901)Enlisting and Leading Project of the Key Scientific and Technological Innovation in Heilongjiang Province,China(Grant No.2021ZXJ02A03,04)the North China University of Water Resources and Electric Power Launch Fund for High-level Talents Research(Grant No.40937).
文摘To further study the load transfer mechanism of roofemulti-pillarefloor system during cascading pillar failure(CPF),numerical simulation and theoretical analysis were carried out to study the three CPF modes according to the previous experimental study on treble-pillar specimens,e.g.successive failure mode(SFM),domino failure mode(DFM)and compound failure mode(CFM).Based on the finite element code rock failure process analysis(RFPA^(2D)),numerical models of treble-pillar specimen with different mechanical properties were established to reproduce and verify the experimental results of the three CPF modes.Numerical results show that the elastic rebound of roofefloor system induced by pillar instability causes dynamic disturbance to adjacent pillars,resulting in sudden load increases and sudden jump displacement of adjacent pillars.The phenomena of load transfer in the roofemulti-pillarefloor system,as well as the induced accelerated damage behavior in adjacent pillars,were discovered and studied.In addition,based on the catastrophe theory and the proposed mechanical model of treble-pillar specimen edisc spring group system,a potential function that characterizes the evolution characteristics of roof emulti-pillarefloor system was established.The analytical expressions of sudden jump and energy release of treble-pillar specimenedisc spring group system of the three CPF modes were derived according to the potential function.The numerical and theoretical results show good agreement with the experimental results.This study further reveals the physical essence of load transfer during CPF of roof emulti-pillarefloor system,which provides references for mine design,construction and disaster prevention.
基金funded by the National Natural Science Foundation of China under Grant 52177074.
文摘Cyber-physical power system(CPPS)has significantly improved the operational efficiency of power systems.However,cross-space cascading failures may occur due to the coupling characteristics,which poses a great threat to the safety and reliability of CPPS,and there is an acute need to reduce the probability of these failures.Towards this end,this paper first proposes a cascading failure index to identify and quantify the importance of different information in the same class of communication services.On this basis,a joint improved risk-balanced service function chain routing strategy(SFC-RS)is proposed,which is modeled as a robust optimization problem and solved by column-and-constraint generation(C-CG)algorithm.Compared with the traditional shortest-path routing algorithm,the superiority of SFC-RS is verified in the IEEE 30-bus system.The results demonstrate that SFC-RS effectively mitigates the risk associated with information transmission in the network,enhances information transmission accessibility,and effectively limits communication disruption from becoming the cause of cross-space cascading failures.
基金supported by the Science and Technology Project of China Southern Power Grid Co.,Ltd.under Grant GDKJXM20222357.
文摘In recent times,the impact of typhoon disasters on integrated energy active distribution networks(IEADNs)has received increasing attention,particularly,in terms of effective cascading fault path prediction and enhanced fault recovery performance.In this study,we propose a modified ORNL-PSerc-Alaska(OPA)model based on optimal power flow(OPF)calculation to forecast IEADN cascading fault paths.We first established the topology and operational model of the IEADNs,and the typical fault scenario was chosen according to the component fault probability and information entropy.The modified OPA model consisted of two layers:An upper-layer model to determine the cascading fault location and a lower-layer model to calculate the OPF by using Yalmip and CPLEX and provide the data to update the upper-layer model.The approach was validated via the modified IEEE 33-node distribution system and two real IEADNs.Simulation results showed that the fault trend forecasted by the novel OPA model corresponded well with the development and movement of the typhoon above the IEADN.The proposed model also increased the load recovery rate by>24%compared to the traditional OPA model.
基金supported by Shanghai Rising-Star Program(No.22QA1403900)the National Natural Science Foundation of China(No.71804106)the Noncarbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program.
文摘Cascading faults have been identified as the primary cause of multiple power outages in recent years.With the emergence of integrated energy systems(IES),the conventional approach to analyzing power grid cascading faults is no longer appropriate.A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance.In this study,an innovative analysis method for cascading faults in integrated heat and electricity systems(IHES)is proposed.It considers the degradation characteristics of transmission and energy supply com-ponents in the system to address the impact of component aging on cascading faults.Firstly,degradation models for the current carrying capacity of transmission lines,the water carrying capacity and insulation performance of thermal pipelines,as well as the performance of energy supply equipment during aging,are developed.Secondly,a simulation process for cascading faults in the IHES is proposed.It utilizes an overload-dominated development model to predict the propagation path of cascading faults while also considering network islanding,electric-heating rescheduling,and load shedding.The propagation of cascading faults is reflected in the form of fault chains.Finally,the results of cascading faults under different aging levels are analyzed through numerical examples,thereby verifying the effectiveness and rationality of the proposed model and method.
基金the National Natural Science Foundation of China(Grant Nos.62203229,61672298,61873326,and 61802155)the Philosophy and Social Sciences Research of Universities in Jiangsu Province(Grant No.2018SJZDI142)+2 种基金the Natural Science Research Projects of Universities in Jiangsu Province(Grant No.20KJB120007)the Jiangsu Natural Science Foundation Youth Fund Project(Grant No.BK20200758)Qing Lan Project and the Science and Technology Project of Market Supervision Administration of Jiangsu Province(Grant No.KJ21125027)。
文摘Network robustness is one of the core contents of complex network security research.This paper focuses on the robustness of community networks with respect to cascading failures,considering the nodes influence and community heterogeneity.A novel node influence ranking method,community-based Clustering-LeaderRank(CCL)algorithm,is first proposed to identify influential nodes in community networks.Simulation results show that the CCL method can effectively identify the influence of nodes.Based on node influence,a new cascading failure model with heterogeneous redistribution strategy is proposed to describe and analyze node fault propagation in community networks.Analytical and numerical simulation results on cascading failure show that the community attribute has an important influence on the cascading failure process.The network robustness against cascading failures increases when the load is more distributed to neighbors of the same community instead of different communities.When the initial load distribution and the load redistribution strategy based on the node influence are the same,the network shows better robustness against node failure.
基金funded by the State Grid Limited Science and Technology Project of China,Grant Number SGSXDK00DJJS2200144.
文摘At present,the proportion of new energy in the power grid is increasing,and the random fluctuations in power output increase the risk of cascading failures in the power grid.In this paper,we propose a method for identifying high-risk scenarios of interlocking faults in new energy power grids based on a deep embedding clustering(DEC)algorithm and apply it in a risk assessment of cascading failures in different operating scenarios for new energy power grids.First,considering the real-time operation status and system structure of new energy power grids,the scenario cascading failure risk indicator is established.Based on this indicator,the risk of cascading failure is calculated for the scenario set,the scenarios are clustered based on the DEC algorithm,and the scenarios with the highest indicators are selected as the significant risk scenario set.The results of simulations with an example power grid show that our method can effectively identify scenarios with a high risk of cascading failures from a large number of scenarios.
基金The National Natural Science Foundation of China(No.51277028)
文摘This paper discusses the primary causes from the point of synergistic effects to improve power system vulnerability in the power system planning and safety operation. Based on the vulnerability conception in the complex network theory the vulnerability of the power system can be evaluated by the minimum load loss rate when considering power supply ability.Consequently according to the synergistic effect theory the critical line of the power system is defined by its influence on failure set vulnerability in N-k contingencies.The cascading failure modes are proposed based on the criterion whether the acceptable load curtailment level is below a preset value.Significant conclusions are revealed by results of IEEE 39 case analysis weak points of power networks and heavy load condition are the main causes of large-scale cascading failures damaging synergistic effects can result in partial failure developed into large-scale cascading failures vulnerable lines of power systems can directly lead the partial failure to deteriorate into a large blackout while less vulnerable lines can cause a large-scale cascading failure.
基金supported by the National Key Technology R&D Program of China under Grant No.2012BAH46B04
文摘Cascading failures are common phenomena in many of real-world networks,such as power grids,Internet,transportation networks and social networks.It's worth noting that once one or a few users on a social network are unavailable for some reasons,they are more likely to influence a large portion of social network.Therefore,an effective mitigation strategy is very critical for avoiding or reducing the impact of cascading failures.In this paper,we firstly quantify the user loads and construct the processes of cascading dynamics,then elaborate the more reasonable mechanism of sharing the extra user loads with considering the features of social networks,and further propose a novel mitigation strategy on social networks against cascading failures.Based on the realworld social network datasets,we evaluate the effectiveness and efficiency of the novel mitigation strategy.The experimental results show that this mitigation strategy can reduce the impact of cascading failures effectively and maintain the network connectivity better with lower cost.These findings are very useful for rationally advertising and may be helpful for avoiding various disasters of cascading failures on many real-world networks.
基金the National Basic Research Program (973) of China (No. 2004CB217902)the National Natural Science Foundation of China (Nos. 60421002 and 60804045)the Postdoctoral Science Foundation of China (No. 20070421163)
文摘The local-world (LW) evolving network model shows a transition for the degree distribution between the exponential and power-law distributions, depending on the LW size. Cascading failures under intentional attacks in LW network models with different LW sizes were investigated using the cascading failures load model. We found that the LW size has a significant impact on the network's robustness against deliberate attacks. It is much easier to trigger cascading failures in LW evolving networks with a larger LW size. Therefore, to avoid cascading failures in real networks with local preferential attachment such as the Internet, the World Trade Web and the multi-agent system, the LW size should be as small as possible.
基金supported by the National Natural Science Foundation of China(60972145)the National Aerospace Science Foundation of China(20140751008)
文摘With society's increasing dependence on critical infrastructure such as power grids and communications systems, the robustness of these systems has attracted significant attention.Failure of some nodes can trigger a cascading failure, which completely fragments the network, necessitating recovery efforts to improve robustness of complex systems. Inspired by real-world scenarios, this paper proposes repair models after two kinds of network failures, namely complete and incomplete collapse. In both models, three kinds of repair strategies are possible, including random selection(RS), node selection based on single network node degree(SD), and node selection based on double network node degree(DD). We find that the node correlation in each of the two coupled networks affects repair efficiency. Numerical simulation and analysis results suggest that the repair node ratio and repair strategies may have a significant impact on the economics of the repair process. The results of this study thus provide insight into ways to improve the robustness of coupled networks after cascading failures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51076036 and 51206033)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No.51121004)+2 种基金the Fundamental Research Funds for the Central Universities,China (Grant No. HIT.BRET2.2010008)the Doctoral Fund of Ministry of Education of China (Grant No. 20112302110020)the China Postdoctoral Science Foundation (Grant No. 2011M500652)
文摘Direct numerical simulations (DNS) were performed for the forced homogeneous isotropic turbulence (FHIT) with/without polymer additives in order to elaborate the characteristics of the turbulent energy cascading influenced by drag-reducing effects. The finite elastic non-linear extensibility-Peterlin model (FENE-P) was used as the conformation tensor equation for the viscoelastic polymer solution. Detailed analyses of DNS data were carried out in this paper for the turbulence scaling law and the topological dynamics of FHIT as well as the important turbulent parameters, including turbulent kinetic energy spectra, enstrophy and strain, velocity structure function, small-scale intermittency, etc. A natural and straightforward definition for the drag reduction rate was also proposed for the drag-reducing FHIT based on the decrease degree of the turbulent kinetic energy. It was found that the turbulent energy cascading in the FHIT was greatly modified by the drag-reducing polymer additives. The enstrophy and the strain fields in the FH1T of the polymer solution were remarkably weakened as compared with their Newtonian counterparts. The small-scale vortices and the small-scale intermittency were all inhibited by the viscoelastic effects in the FHIT of the polymer solution. However, the scaling law in a fashion of extended self-similarity for the FHIT of the polymer solution, within the presently simulated range of Weissenberg numbers, had no distinct differences compared with that of the Newtonian fluid case.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328903)the Special Fund of 2011 Internet of Things Development of Ministry of Industry and Information Technology,China(Grant No.2011BAJ03B13-2)+1 种基金the National Natural Science Foundation of China(Grant No.61473050)the Key Science and Technology Program of Chongqing,China(Grant No.cstc2012gg-yyjs40008)
文摘Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60804066 and 61165007)the Scientific and Technological Project of Education Department of Jiangxi Province, China (Grant Nos. GJJ12286 and KJLD12068)
文摘Based on the relationship between capacity and load, cascading failure on weighted complex networks is investigated, and a load-capacity optimal relationship (LCOR) model is proposed in this paper. Compared with three other kinds of load- capacity linear or non-linear relationship models in model networks as well as a number of real-world weighted networks including the railway network, the airports network and the metro network, the LCOR model is shown to have the best robustness against cascading failure with less cost. Furthermore, theoretical analysis and computational method of its cost threshold are provided to validate the effectiveness of the LCOR model. The results show that the LCOR model is effective for designing real-world networks with high robustness and less cost against cascading failure.
基金the National Natural Science Foundation of China(61873057)the Education Department of Jilin Province(JJKH20200118KJ).
文摘This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control functions of a cyber network and power flow characteristics of a power network,a power cyber-physical system model is established.Then,the influences of a false data attack on the decision-making and control processes of the cyber network communication processes are studied,and a cascading failure analysis process is proposed for the cyber-attack environment.In addition,a vulnerability evaluation index is defined from two perspectives,i.e.,the topology integrity and power network operation characteristics.Moreover,the effectiveness of a power flow betweenness assessment for vulnerable nodes in the cyberphysical environment is verified based on comparing the node power flow betweenness and vulnerability assessment index.Finally,an IEEE14-bus power network is selected for constructing a power cyber-physical system.Simulations show that both the uplink communication channel and downlink communication channel suffer from false data attacks,which affect the ability of the cyber network to suppress the propagation of cascading failures,and expand the scale of the cascading failures.The vulnerability evaluation index is calculated for each node,so as to verify the effectiveness of identifying vulnerable nodes based on the power flow betweenness.
基金Supported by National Natural Science Foundation of China(Grant No.51175222)Jilin Provincial Natural Science Foundation of China(Grant No.20150101025JC)High-end CNC machine tools and basic manufacturing equipment science and technology of major special projects(Grant No.2015ZX04003002)
文摘In order to rectify the problems that the com- ponent reliability model exhibits deviation, and the evalu- ation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influ- enced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure proba- bility function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree ofthe system component, which provides a theoretical basis for reliability allocation of machine center system.
基金Project partly supported by National Basic Research Program of China (Grant No 2006CB705500)National Natural Science Foundation of China (Grant Nos 70631001, 70671008 and 70801005)the Innovation Foundation of Science and Technology for Excellent Doctorial Candidate of Beijing Jiaotong University (Grant No 48033)
文摘In this article, we investigate cascading failures in complex networks by introducing a feedback. To characterize the effect of the feedback, we define a procedure that involves a self-organization of trip distribution during the process of cascading failures. For this purpose, user equilibrium with variable demand is used as an alternative way to determine the traffic flow pattern throughout the network. Under the attack, cost function dynamics are introduced to discuss edge overload in complex networks, where each edge is assigned a finite capacity (controlled by parameter α). We find that scale-free networks without considering the effect of the feedback are expected to be very sensitive to α as compared with random networks, while this situation is largely improved after introducing the feedback.
基金Project supported by the National Natural Science Foundation of China(Grant No.30570432)the General Project of Hunan Provincial Educational Department of China(Grant No.07C754)
文摘This paper investigates cascading failures in networks by considering interplay between the flow dynamic and the network topology, where the fluxes exchanged between a pair of nodes can be adaptively adjusted depending on the changes of the shortest path lengths between them. The simulations on both an artificially created scale-free network and the real network structure of the power grid reveal that the adaptive adjustment of the fluxes can drastically enhance the robustness of complex networks against cascading failures. Particularly, there exists an optimal region where the propagation of the cascade is significantly suppressed and the fluxes supported by the network are maximal. With this understanding, a costless strategy of defense for preventing cascade breakdown is proposed. It is shown to be more effective for suppressing the propagation of the cascade than the recent proposed strategy of defense based on the intentional removal of nodes.
基金supported by the Natural Science Foundation of Hebei Province,China(Grant No.F2014203239)the Autonomous Research Fund of Young Teacher in Yanshan University(Grant No.14LGB017)Yanshan University Doctoral Foundation,China(Grant No.B867)
文摘In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure.