A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes...A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.展开更多
The pressure-sensitive effect on the pore structure of sandstone was investigated using X-ray computed micro-tomography and QEMSCAN quantitative mineral analysis. In a physical simulation study, we extracted the pore ...The pressure-sensitive effect on the pore structure of sandstone was investigated using X-ray computed micro-tomography and QEMSCAN quantitative mineral analysis. In a physical simulation study, we extracted the pore network model from digital cores at different confining pressures and evaluated the effect of pressure sensitivity on the multiphase displacement process. In both the pore network model and QEMSCAN scanning, the pore structure was observed to be damaged under a high confining pressure. Due to their different scales, the pores and throats exhibited inhomogeneous changes; further, the throats exhibited a significant variation compared to that exhibited by the pores. Meanwhile, the heterogeneity of the pore structure under the two aforementioned activities was aggravated by the elastic-plastic deformation of the pore structure.The pressure-sensitive effect increased the proportion of mineral particles, such as quartz(the main component of the core skeleton), and reduced the proportion of clay minerals. The clay minerals were originally attached to the pore walls or interspersed in the pores; however, as the pressure increased, the clay minerals accumulated in the pores resulting in blockage of the pores. While simulating the multiphase displacement process, increasing the confining pressure was observed to severely restrict the flowability of oil and water. This study promises to improve the efficiency of reservoir development in terms of oil and gas exploitation.展开更多
Food dye Brilliant Blue was introduced as the tracer in a dye-tracing experiment to obtain dye profile patterns of sandy loam soil, aeolian sandy soil, percolating paddy soil and permeable paddy soil. The dyed soil pr...Food dye Brilliant Blue was introduced as the tracer in a dye-tracing experiment to obtain dye profile patterns of sandy loam soil, aeolian sandy soil, percolating paddy soil and permeable paddy soil. The dyed soil profiles were then photographed and the photos were scanned into a computer. Edited with certain software, only the dyed areas were left on the profile photos, which indicted the preferential flow paths for water and solute transport. Fractal dimensions of the dye patterns were calculated according to Arnold's function. Soil particle size distribution was analyzed by pipette method. The regression analysis showed that there was significant relationship between soil clay content and fractal dimension D of the dye pattern of soil profile. Based on the experiment results, the possibility of introducing fractal dimension to estimation of soil sensitivity to preferential flow is discussed.展开更多
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ...Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation.展开更多
The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable incl...The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable inclined magnetic field,thermal radiation,and an exponential heat source.Experimentally estimated values of the thermal conductivity and viscosity of the hybrid nanomaterial are utilized in the calculation.The governing intricate nonlinear problem is treated numerically,and a parametric analysis is carried out by using graphical visualizations.A finite difference-based numerical scheme is utilized in conjunction with the 4-stage Lobatto IIIa formula to solve the nonlinear governing problem.The interactive effects of the pertinent parameters on the heat transfer rate are presented by plotting the response surfaces and the contours obtained from the RSM.The mono and hybrid nanomaterial flow fields are compared.The hybrid nanomaterial possesses enhanced thermal fields for nanoparticle volume fractions less than 2%.The irregular heat source and the thermal radiation enhance the temperature profiles.The high level of the thermal radiation and the low levels of the exponential heat source and the angle of inclination(of the magnetic field)lead to the optimized heat transfer rate(Nux=7.46275).展开更多
This letter reports traffic flow sensitivity to visco-elasticity, with the traffic flow modeling briefly described at first and then used to do traffic flow simulations whose results can reflect the properties of spat...This letter reports traffic flow sensitivity to visco-elasticity, with the traffic flow modeling briefly described at first and then used to do traffic flow simulations whose results can reflect the properties of spatial-temporal evolution of ring traffic flow. It reveals that visco-elasticity plays crucial role in formation of traffic flow patterns, implying that self-organization of traffic flow is crucial in determining traffic flow status.展开更多
Theoretical equations for computing sensitivity coefficients of wellbore pressures to estimate the reservoir parameters in low-permeability reservoirs conditioning to non-Darcy flow data at low velocity were obtained....Theoretical equations for computing sensitivity coefficients of wellbore pressures to estimate the reservoir parameters in low-permeability reservoirs conditioning to non-Darcy flow data at low velocity were obtained. It is shown by a lot of numerical calculations that the wellbore pressures are much more sensitive to permeability very near the well than to permeability a few gridblocks away from the well. When an initial pressure gradient existent sensitivity coefficients in the region are closer to the active well than to the observation well. Sensitivity coefficients of observation well at the line between the active well and the observation well are influenced greatly by the initial pressure gradient.展开更多
This paper used the Chinese listing Corporation financial data (2003-2013) to study the relationship between the supply chain finance development, SME financing constraints and cash flow. The study found that the sm...This paper used the Chinese listing Corporation financial data (2003-2013) to study the relationship between the supply chain finance development, SME financing constraints and cash flow. The study found that the small and medium-sized enterprise has obvious cash flow sensitivity, explaining it is subjected to the larger financing constraints. The development of supply chain finance can alleviate the financing constraints of SMEs, but for large enterprises it is unable to play a corresponding role.展开更多
In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the de...In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the deformation amount of all the samples was 50%. The strain rate sensitivity exponent (m) and strain hardening exponent (n) under different deformation conditions were calculated, meanwhile the effects of the processing parameters on the values ofm andn were analyzed. The results show that the flow stress increases with the increase of strain rate and the decrease of deformation temperature. The value ofm increases with the increase of deformation temperature and decreases with the increase of strain rate, while the value ofn decreases with the increase of deformation temperature. A novel flow stress model during hot deformation of superalloy GH696 was also established. And the calculated flow stress of the alloy is in good agreement with the experimental one.展开更多
The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequentl...The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.展开更多
Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend an...Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.展开更多
A modified cellular automaton model for traffic flow on highway is proposed with a novel concept about the variable security gap. The concept is first introduced into the original Nagel-Schreckenberg model, which is c...A modified cellular automaton model for traffic flow on highway is proposed with a novel concept about the variable security gap. The concept is first introduced into the original Nagel-Schreckenberg model, which is called the non-sensitive driving cellular automaton model. And then it is incorporated with a sensitive driving NaSch model,in which the randomization brake is arranged before the deterministic deceleration. A parameter related to the variable security gap is determined through simulation. Comparison of the simulation results indicates that the variable security gap has different influence on the two models. The fundamental diagram obtained by simulation with the modified sensitive driving NaSch model shows that the maximumflow are in good agreement with the observed data, indicating that the presented model is more reasonable and realistic.展开更多
The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile...The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile tests at 298,173 and 77 K and tested at strain rates in the range from 0.1 to 0.0001 s^(−1).The results indicate the suppression of the Portevin−Le Chatelier(PLC)effect and dynamic strain aging(DSA)at 77 K.In contrast,at 298 K,a remarkable serrated flow,characteristic of the PLC effect,is observed.Furthermore,the tensile behavior at 77 K,compared with that observed at 173 and 298 K,shows a simultaneous increase in strength,uniform elongation,modulus of toughness,strain-hardening exponent and strain rate sensitivity,which is related to a decrease in the dynamic recovery rate at low temperature.These responses are reflected on the fracture morphology,since the dimple size decreases at 77 K,while the area covered by dimples increases.Comparisons of the Johnson−Cook model show that a good agreement can be obtained for tests at 173 and 77 K,in which DSA is suppressed.展开更多
This paper presents a novel capacitance probe, i.e., paraUel-wire capacitance probe (PWCP), for two-phase flow measurement. Using finite element method (FEM), the sensitivity field of the PWCP is investigated and ...This paper presents a novel capacitance probe, i.e., paraUel-wire capacitance probe (PWCP), for two-phase flow measurement. Using finite element method (FEM), the sensitivity field of the PWCP is investigated and the optimum sensor geometry is determiend in term of the characterisitc parameters. Then, the response of PWCP for the oil-water stratified flow is calculated, and it is found the PWCP has better linearity and sensitivity to the variation of water-layer thickness, and is almost independant of the angle between the oil-water interface and the sensor electrode. Finally, the static experiment for oil-water stratified flow is carried out and the calibration method of liquid holdup is presented.展开更多
The paper studies the methodologies of the cargo flow study and projections in Tumen River Economic Development Area(TREDA) that some governments and international scholars used. The authors consider that, in order to...The paper studies the methodologies of the cargo flow study and projections in Tumen River Economic Development Area(TREDA) that some governments and international scholars used. The authors consider that, in order topromote investment, facilitation of cross-border trade and infrastructure in the region, the basic methodology should bebased on the regional economic growth of pertinent Northeast Asian countries and regions to make projections of the situations of regional cargo flows, and then analyzing the cargo flow trend. Based on the above, the authors utilize the routescomparing model and gravity model to forecast the cargo flows through the ports and related routes in TREDA (2000 -2020). The authors also inquire into the main obstacles which affect the cargo flows of the region, analyze the influenceson cargo flows if the obstacles change with sensitivity analyses and try to find the way to sole the obstacles.展开更多
A theoretical sensitivity analysis of total lost timeand saturated flow rate is conducted based on the methodproposed in the Highway Capacity Manual (HCM). Inaddition, the accuracy of the timing calculation algorith...A theoretical sensitivity analysis of total lost timeand saturated flow rate is conducted based on the methodproposed in the Highway Capacity Manual (HCM). Inaddition, the accuracy of the timing calculation algorithmsuggested in the HCM is verified using field data from threeintersections. It is demonstrated that there is a positivecorrelation between the estimation error rates of the signalcycle length and the phase lost time. Also, the estimated valueof saturated flow rate must meet the specific requirementsunder different saturated conditions to guarantee the accuracyof the signal cycle length. However, through analysis of fielddata collected on the discharge headway in three intersections,it is also found that, if the 4th vehicle is set as the initial spotfor the stable discharge headway, as is recommended in theHCM, the error of the phase lost time will be over 40% whenthe line length is over 10 vehicles. Moreover, the calculationerror for signal cycle length is not guaranteed to fall within the15% range when the length of line is over 15 vehicles. It issuggested that, to improve the applicability of the HCMmethod, a more accurate description of the distributedregularity of the discharge headway is necessary whencalibrating key parameters.展开更多
[Objective] The research aimed to study the possible mechanism of terrain effect on cold-flow snowstorm.[Method] By using the meso-scale numerical model(WRF),a cold-flow snowstorm weather process in Shandong Peninsula...[Objective] The research aimed to study the possible mechanism of terrain effect on cold-flow snowstorm.[Method] By using the meso-scale numerical model(WRF),a cold-flow snowstorm weather process in Shandong Peninsula was carried out numerical simulation and terrain sensitivity contrast test.The possible reason of terrain effect on falling zone and strength of snowstorm was deeply analyzed from water vapor,thermodynamic field and so on.[Result] The mountain terrain in Shandong Peninsula had great influences on falling zone and strength of cold-flow snowstorm.The strength of snowstorm obviously increased,and the snowfall center obviously moved northward.The main reason was that terrain caused the low-level wind field convergence and vertical movement in the troposphere strengthened.Then,the spatial distribution of water vapor and snow water content in the cold-flow snowstorm process obviously changed.So,the whole snowstorm process was affected.[Conclusion] The mountain terrain in Shandong Peninsula was the important element which needed to be focused on considering in the forecast analysis of cold-flow snowstorm weather process.展开更多
The global wall shear stress measurement tech- nique using shear-sensitive liquid crystal (SSLC) is extended to wind tunnel measurements. Simple and common every- day equipment is used in the measurement; in particu...The global wall shear stress measurement tech- nique using shear-sensitive liquid crystal (SSLC) is extended to wind tunnel measurements. Simple and common every- day equipment is used in the measurement; in particular a tungsten-halogen light bulb provides illumination and a saturation of SSLC coating color change with time is found. Spatial wall shear stress distributions of several typical flows are obtained using this technique, including wall-jet flow, vortex flow generated by a delta wing and junction flow behind a thin cylinder, although the magnitudes are not fully calibrated. The results demonstrate that SSLC technique can be extended to wind tunnel measurements with no complicated facilities used.展开更多
基金This study was supported by the National Natural Science Foundation of China(U22B2075,52274056,51974356).
文摘A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.
文摘The pressure-sensitive effect on the pore structure of sandstone was investigated using X-ray computed micro-tomography and QEMSCAN quantitative mineral analysis. In a physical simulation study, we extracted the pore network model from digital cores at different confining pressures and evaluated the effect of pressure sensitivity on the multiphase displacement process. In both the pore network model and QEMSCAN scanning, the pore structure was observed to be damaged under a high confining pressure. Due to their different scales, the pores and throats exhibited inhomogeneous changes; further, the throats exhibited a significant variation compared to that exhibited by the pores. Meanwhile, the heterogeneity of the pore structure under the two aforementioned activities was aggravated by the elastic-plastic deformation of the pore structure.The pressure-sensitive effect increased the proportion of mineral particles, such as quartz(the main component of the core skeleton), and reduced the proportion of clay minerals. The clay minerals were originally attached to the pore walls or interspersed in the pores; however, as the pressure increased, the clay minerals accumulated in the pores resulting in blockage of the pores. While simulating the multiphase displacement process, increasing the confining pressure was observed to severely restrict the flowability of oil and water. This study promises to improve the efficiency of reservoir development in terms of oil and gas exploitation.
基金Project supported by the National Key Basic Research Support FOundation(NKBRSF) of China(No.G19990ll708) and the Guangxi Uni,rsitv Science funds China(No.1701).
文摘Food dye Brilliant Blue was introduced as the tracer in a dye-tracing experiment to obtain dye profile patterns of sandy loam soil, aeolian sandy soil, percolating paddy soil and permeable paddy soil. The dyed soil profiles were then photographed and the photos were scanned into a computer. Edited with certain software, only the dyed areas were left on the profile photos, which indicted the preferential flow paths for water and solute transport. Fractal dimensions of the dye patterns were calculated according to Arnold's function. Soil particle size distribution was analyzed by pipette method. The regression analysis showed that there was significant relationship between soil clay content and fractal dimension D of the dye pattern of soil profile. Based on the experiment results, the possibility of introducing fractal dimension to estimation of soil sensitivity to preferential flow is discussed.
文摘Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation.
文摘The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable inclined magnetic field,thermal radiation,and an exponential heat source.Experimentally estimated values of the thermal conductivity and viscosity of the hybrid nanomaterial are utilized in the calculation.The governing intricate nonlinear problem is treated numerically,and a parametric analysis is carried out by using graphical visualizations.A finite difference-based numerical scheme is utilized in conjunction with the 4-stage Lobatto IIIa formula to solve the nonlinear governing problem.The interactive effects of the pertinent parameters on the heat transfer rate are presented by plotting the response surfaces and the contours obtained from the RSM.The mono and hybrid nanomaterial flow fields are compared.The hybrid nanomaterial possesses enhanced thermal fields for nanoparticle volume fractions less than 2%.The irregular heat source and the thermal radiation enhance the temperature profiles.The high level of the thermal radiation and the low levels of the exponential heat source and the angle of inclination(of the magnetic field)lead to the optimized heat transfer rate(Nux=7.46275).
基金support of Russian Foundation for Basic Research (RFBR 13-01-12056)National Natural Science Foundation of China (10972212)
文摘This letter reports traffic flow sensitivity to visco-elasticity, with the traffic flow modeling briefly described at first and then used to do traffic flow simulations whose results can reflect the properties of spatial-temporal evolution of ring traffic flow. It reveals that visco-elasticity plays crucial role in formation of traffic flow patterns, implying that self-organization of traffic flow is crucial in determining traffic flow status.
文摘Theoretical equations for computing sensitivity coefficients of wellbore pressures to estimate the reservoir parameters in low-permeability reservoirs conditioning to non-Darcy flow data at low velocity were obtained. It is shown by a lot of numerical calculations that the wellbore pressures are much more sensitive to permeability very near the well than to permeability a few gridblocks away from the well. When an initial pressure gradient existent sensitivity coefficients in the region are closer to the active well than to the observation well. Sensitivity coefficients of observation well at the line between the active well and the observation well are influenced greatly by the initial pressure gradient.
文摘This paper used the Chinese listing Corporation financial data (2003-2013) to study the relationship between the supply chain finance development, SME financing constraints and cash flow. The study found that the small and medium-sized enterprise has obvious cash flow sensitivity, explaining it is subjected to the larger financing constraints. The development of supply chain finance can alleviate the financing constraints of SMEs, but for large enterprises it is unable to play a corresponding role.
文摘In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the deformation amount of all the samples was 50%. The strain rate sensitivity exponent (m) and strain hardening exponent (n) under different deformation conditions were calculated, meanwhile the effects of the processing parameters on the values ofm andn were analyzed. The results show that the flow stress increases with the increase of strain rate and the decrease of deformation temperature. The value ofm increases with the increase of deformation temperature and decreases with the increase of strain rate, while the value ofn decreases with the increase of deformation temperature. A novel flow stress model during hot deformation of superalloy GH696 was also established. And the calculated flow stress of the alloy is in good agreement with the experimental one.
基金The project supported by the Innovative Project of CAS (KJCX-SW-L08)the National Basic Research Program of China(973)
文摘The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.
基金supported by the National Natural Science Foundation of China(Grant No.51709021)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2016491111)
文摘Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.
文摘A modified cellular automaton model for traffic flow on highway is proposed with a novel concept about the variable security gap. The concept is first introduced into the original Nagel-Schreckenberg model, which is called the non-sensitive driving cellular automaton model. And then it is incorporated with a sensitive driving NaSch model,in which the randomization brake is arranged before the deterministic deceleration. A parameter related to the variable security gap is determined through simulation. Comparison of the simulation results indicates that the variable security gap has different influence on the two models. The fundamental diagram obtained by simulation with the modified sensitive driving NaSch model shows that the maximumflow are in good agreement with the observed data, indicating that the presented model is more reasonable and realistic.
基金We would like to acknowledge the Sao Paulo Research Foundation(FAPESP)(Grant No.2014/15091-7 and 2016/10997-0)the Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brazil(CNPq)(Grant No.449009/2014-9)This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brazil(CAPES)-Finance Code 001.Danielle Cristina Camilo MAGALHÃES acknowledges CNPq for her PhD scholarship(Grant No.153181/2013-3).
文摘The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile tests at 298,173 and 77 K and tested at strain rates in the range from 0.1 to 0.0001 s^(−1).The results indicate the suppression of the Portevin−Le Chatelier(PLC)effect and dynamic strain aging(DSA)at 77 K.In contrast,at 298 K,a remarkable serrated flow,characteristic of the PLC effect,is observed.Furthermore,the tensile behavior at 77 K,compared with that observed at 173 and 298 K,shows a simultaneous increase in strength,uniform elongation,modulus of toughness,strain-hardening exponent and strain rate sensitivity,which is related to a decrease in the dynamic recovery rate at low temperature.These responses are reflected on the fracture morphology,since the dimple size decreases at 77 K,while the area covered by dimples increases.Comparisons of the Johnson−Cook model show that a good agreement can be obtained for tests at 173 and 77 K,in which DSA is suppressed.
基金Supported by the National Natural Science Foundation of China (50974095, 41174109, 61104148), and the National Science and Technology Mai or Projects (2011ZX05020-006).
文摘This paper presents a novel capacitance probe, i.e., paraUel-wire capacitance probe (PWCP), for two-phase flow measurement. Using finite element method (FEM), the sensitivity field of the PWCP is investigated and the optimum sensor geometry is determiend in term of the characterisitc parameters. Then, the response of PWCP for the oil-water stratified flow is calculated, and it is found the PWCP has better linearity and sensitivity to the variation of water-layer thickness, and is almost independant of the angle between the oil-water interface and the sensor electrode. Finally, the static experiment for oil-water stratified flow is carried out and the calibration method of liquid holdup is presented.
文摘The paper studies the methodologies of the cargo flow study and projections in Tumen River Economic Development Area(TREDA) that some governments and international scholars used. The authors consider that, in order topromote investment, facilitation of cross-border trade and infrastructure in the region, the basic methodology should bebased on the regional economic growth of pertinent Northeast Asian countries and regions to make projections of the situations of regional cargo flows, and then analyzing the cargo flow trend. Based on the above, the authors utilize the routescomparing model and gravity model to forecast the cargo flows through the ports and related routes in TREDA (2000 -2020). The authors also inquire into the main obstacles which affect the cargo flows of the region, analyze the influenceson cargo flows if the obstacles change with sensitivity analyses and try to find the way to sole the obstacles.
基金Jiangsu Science and Technology Project(No.BY2016076-05)the Scientific Research Foundation of Graduate School of Southeast University,the Fundamental Research Funds for the Central Universities,the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX15_0152)
文摘A theoretical sensitivity analysis of total lost timeand saturated flow rate is conducted based on the methodproposed in the Highway Capacity Manual (HCM). Inaddition, the accuracy of the timing calculation algorithmsuggested in the HCM is verified using field data from threeintersections. It is demonstrated that there is a positivecorrelation between the estimation error rates of the signalcycle length and the phase lost time. Also, the estimated valueof saturated flow rate must meet the specific requirementsunder different saturated conditions to guarantee the accuracyof the signal cycle length. However, through analysis of fielddata collected on the discharge headway in three intersections,it is also found that, if the 4th vehicle is set as the initial spotfor the stable discharge headway, as is recommended in theHCM, the error of the phase lost time will be over 40% whenthe line length is over 10 vehicles. Moreover, the calculationerror for signal cycle length is not guaranteed to fall within the15% range when the length of line is over 15 vehicles. It issuggested that, to improve the applicability of the HCMmethod, a more accurate description of the distributedregularity of the discharge headway is necessary whencalibrating key parameters.
基金Supported by Special Item of Public Welfare Industry (Meteorology)Science Research (GYHY201106006)Special Item of Forecaster of China Meteorological Administration (CMATG2007Y08)Key Topics of Shandong Meteorological Bureau (2010sdqxz10)
文摘[Objective] The research aimed to study the possible mechanism of terrain effect on cold-flow snowstorm.[Method] By using the meso-scale numerical model(WRF),a cold-flow snowstorm weather process in Shandong Peninsula was carried out numerical simulation and terrain sensitivity contrast test.The possible reason of terrain effect on falling zone and strength of snowstorm was deeply analyzed from water vapor,thermodynamic field and so on.[Result] The mountain terrain in Shandong Peninsula had great influences on falling zone and strength of cold-flow snowstorm.The strength of snowstorm obviously increased,and the snowfall center obviously moved northward.The main reason was that terrain caused the low-level wind field convergence and vertical movement in the troposphere strengthened.Then,the spatial distribution of water vapor and snow water content in the cold-flow snowstorm process obviously changed.So,the whole snowstorm process was affected.[Conclusion] The mountain terrain in Shandong Peninsula was the important element which needed to be focused on considering in the forecast analysis of cold-flow snowstorm weather process.
基金the Doctorate Creation Foundation of Northwestern Polytechnical University (CX200902)
文摘The global wall shear stress measurement tech- nique using shear-sensitive liquid crystal (SSLC) is extended to wind tunnel measurements. Simple and common every- day equipment is used in the measurement; in particular a tungsten-halogen light bulb provides illumination and a saturation of SSLC coating color change with time is found. Spatial wall shear stress distributions of several typical flows are obtained using this technique, including wall-jet flow, vortex flow generated by a delta wing and junction flow behind a thin cylinder, although the magnitudes are not fully calibrated. The results demonstrate that SSLC technique can be extended to wind tunnel measurements with no complicated facilities used.