Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion...Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.展开更多
Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ...Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ground devices is generally determined by experience.However,too large reshaping force may destroy the deformed casing,and too small reshaping force may also prolong the construction period and affect the repairing effect.In this paper,based on Hertz contact theory and elastic-plastic theory,combined with the process parameters of shaping,and considering the structural characteristics of the deformed casing and reshaper,we propose a mathematical model for calculating the reshaping force required for repairing deformed casing by hydraulic rolling reshaper.Meanwhile,the finite element model and numerical method of hydraulic rolling reshaper repairing deformed casing are established by using the finite element method,and the reliability of the mathematical model is verified by several examples.On this basis,the control variable method is used to investigate the influence of each parameter on the reshaping force,and the influence degree of each parameter is explored by orthogonal simulation test and Pearson correlation analysis.The research results not only provide an important theoretical basis for the prediction of reshaping force in on-site construction,but also provide a reference for the subsequent improvement of the shaping process.展开更多
The casing deformation prevention technology based on the optimization of cement slurry is proposed to reduce the casing deformation of shale oil and gas wells during hydraulic fracturing. In this paper, the fracture ...The casing deformation prevention technology based on the optimization of cement slurry is proposed to reduce the casing deformation of shale oil and gas wells during hydraulic fracturing. In this paper, the fracture mechanism of hollow particles in cement sheath was firstly analyzed by discrete element method, and the effect of hollow particles in cement on casing deformation was investigated by laboratory experiment method. Finally, field test was carried out to verify the improvement effect of the casing deformation based on cement slurry modification. The results show that the formation displacement can be absorbed effectively by hollow particles inside the cement transferring the excessive deformation away from casing. The particles in the uncemented state provide deformation space during formation slipping. The casing with diameter of 139.7 mm could be passed through by bridge plug with the diameter of 99 mm when the mass ratio of particle/cement reaches 1:4. According to the field test feedback, the method based on optimization of cement slurry can effectively reduce the risk of casing deformation, and the recommended range of hollow microbeads content in the cement slurry is between 15% and 25%.展开更多
To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conve...To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conventional casings.However,due to its smaller size,the joint strength of extreme line casing is reduced,which may cause failure when running in the hole.To address this issue,this study focuses on the CST-ZTΦ139.7 mm×7.72 mm extreme line casing and employs the elastic-plastic mechanics to establish a comprehensive analysis of the casing joint,taking into account the influence of geometric and material nonlinearities.A finite element model is developed to analyze the forces and deformations of the extreme line casing joint under axial tension and external collapse load.The model investigates the stress distribution of each thread tooth subjected to various tensile forces and external pressures.Additionally,the tensile strength and crushing strength of the extreme line casing joint are determined through both analytical and experimental approaches.The findings reveal that,under axial tensile load,the bearing surface of each thread tooth experiences uneven stress,with relatively high equivalent stress at the root of each thread tooth.The end thread teeth are valuable spots for failure.It is observed that the critical fracture axial load of thread decreases linearly with the increase of thread tooth sequence.Under external pressure,the circumferential stress is highest at the small end of the external thread,leading to yield deformation.The tensile strength of the joint obtained from the finite element model exhibits a relative error of less than 7%compared to the analytical and experimental values,proving the reliability of the finite element model.The tensile strength of the joint is 3091.9 k N.Moreover,in terms of anti-collapse capability,the joints demonstrate higher resistance to collapse compared to the casing body,which is consistent with the test results where the pipe body experiences collapse and failure while the joints remain intact during the experiment.The failure load of the casing body under external collapse pressure is 87.4 MPa.The present study provides a basic understanding of the mechanical strengths of extreme line casing joint.展开更多
The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine...The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine the maximum fragment velocity.The current work builds on the published formula to further develop a formula for calculating the axial distribution characteristics of the fragment velocity.For this type of warhead,the simulation of the dispersion characteristics of the detonation products at different positions shows that the detonation products at the ends have a much larger axial velocity than those in the middle,and the detonation products have a greater axial dispersion velocity when they are closer to the central axis.The loading process and the fragment velocity vary with the axial position for both casing layers,and the total velocity of the fragments is the vector sum of the radial velocity and the axial velocity.At the same axial position,the acceleration time of the inner casing is greater than that of the outer casing.For the same casing,the fragments generated at the ends have a longer acceleration time than the fragments from the middle.The proposed formula is validated with the X-ray radiography results of the four warheads previously tested experimentally and the 3D smoothedparticle hydrodynamics numerical simulation results of several series of new warheads with different configurations.The formula can accurately and reliably calculate the fragment velocity when the lengthto-diameter ratio of the charge is greater than 1.5 and the thickness of the casing is less than 20%its inner radius.This work thus provides a key reference for the theoretical analysis and the design of warheads with multiple casings.展开更多
The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects...The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.展开更多
This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include o...This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.展开更多
The dynamic modal model analysis of the oil casing connection is done by finite element method (FEM), and the first nature frequency, the second nature frequency, the vibration mode shape and the time domain of the no...The dynamic modal model analysis of the oil casing connection is done by finite element method (FEM), and the first nature frequency, the second nature frequency, the vibration mode shape and the time domain of the node displacement and the element stress variation in the thread connection are gotten. The Von.Mises stresses of the connection in the static and dynamic state are also studied. The results of calculation and analysis show: (1) because the maximum of static stress is at the coupling thread end of connection, the connection begins to thread off at the coupling thread end, which is in accord with the results of the thread off experiment in laboratory; (2) because the first nature frequency is very high, the probability of casing connection to be damaged from vibration is little; (3) the shock dynamic load makes casing connection begin to thread off at the tube thread end.展开更多
Based on structural distribution and fault characteristics of the Luzhou block,southern Sichuan Basin,as well as microseismic,well logging and in-situ stress data,the casing deformation behaviors of deep shale gas wel...Based on structural distribution and fault characteristics of the Luzhou block,southern Sichuan Basin,as well as microseismic,well logging and in-situ stress data,the casing deformation behaviors of deep shale gas wells are summarized,and the casing deformation mechanism and influencing factors are identified.Then,the risk assessment chart of casing deformation is plotted,and the measures for preventing and controlling casing deformation are proposed.Fracturing-activated fault slip is a main factor causing the casing deformation in deep shale gas wells in the Luzhou block.In the working area,the approximate fracture angle is primarily 10°-50°,accounting for 65.34%,and the critical pore pressure increment for fault-activation is 6.05-9.71 MPa.The casing deformation caused by geological factors can be prevented/controlled by avoiding the faults at risk and deploying wells in areas with low value of stress factor.The casing deformation caused by engineering factors can be prevented/controlled by:(1)keeping wells avoid faults with risks of activation and slippage,or deploying wells in areas far from the faulting center if such avoidance is impossible;(2)optimizing the wellbore parameters,for example,adjusting the wellbore orientation to reduce the shear force on casing to a certain extent and thus mitigate the casing deformation;(3)optimizing the casing program to ensure that the curvature radius of the curved section of horizontal well is greater than 200 m while the drilling rate of high-quality reservoirs is not impaired;(4)optimizing the fracturing parameters,for example,increasing the evasive distance,lowering the single-operation pressure,and increasing the stage length,which can help effectively reduce the risk of casing deformation.展开更多
This paper investigates the optimal Birkhoff interpolation and Birkhoff numbers of some function spaces in space L∞[-1,1]and weighted spaces Lp,ω[-1,1],1≤p<∞,with w being a continuous integrable weight function...This paper investigates the optimal Birkhoff interpolation and Birkhoff numbers of some function spaces in space L∞[-1,1]and weighted spaces Lp,ω[-1,1],1≤p<∞,with w being a continuous integrable weight function in(-1,1).We proved that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal.We also show that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal when the function values of the two endpoints are included in the interpolation systems.展开更多
Large-scale sand fracturing is a necessary means in the efficient exploitation of shale gas/oil.However,in the process of fracturing operation,the sand carrying fluid and proppant easily causes scouring and wear to pr...Large-scale sand fracturing is a necessary means in the efficient exploitation of shale gas/oil.However,in the process of fracturing operation,the sand carrying fluid and proppant easily causes scouring and wear to production strings,especially the casing perforation system,which damage the wellbore integrity and deformation to affect the subsequent fracturing.For this problem,taking the actual construction conditions and perforation technology of an oilfield in western China as an example,the structural parameters of the downhole string were measured and the wall thickness reduction model of casing perforation suitable for large-displacement sand fracturing in horizontal well section was established.With software ANSYS-FLUENT,the casing perforation erosion under the conditions of different displacements,sand content and perforation sand-passing quantity in the process of sand fracturing was simulated and calculated.The influences of three parameters on perforation erosion and expansion were analyzed and the prediction chart of the influences of three main control factors on perforation erosion and expansion was established.The perforation erosion images after fracturing construction were obtained with the downhole eagle perforation logging technology.The logging chart results were compared with the downhole eagle perforation data.The error between the established numerical simulation calculation charts and the real logging data was about 5%,indicating that the simulation charts were the valuable reference.展开更多
An uncertainty analysis method is proposed for the assessment of the residual strength of a casing subjected to wear and non-uniform load in a deep well.The influence of casing residual stress,out-of-roundness and non...An uncertainty analysis method is proposed for the assessment of the residual strength of a casing subjected to wear and non-uniform load in a deep well.The influence of casing residual stress,out-of-roundness and non-uniform load is considered.The distribution of multi-source parameters related to the residual anti extrusion strength and residual anti internal pressure strength of the casing after wear are determined using the probability theory.Considering the technical casing of X101 well in Xinjiang Oilfield as an example,it is shown that the randomness of casing wear depth,formation elastic modulus and formation Poisson’s ratio are the main factors that affect the uncertainty of residual strength.The wider the confidence interval is,the greater the uncertainty range is.Compared with the calculations resulting from the proposed uncertainty analysis method,the residual strength obtained by means of traditional single value calculation method is either larger or smaller,which leads to the conclusion that the residual strength should be considered in terms of a range of probabilities rather than a single value.展开更多
A three-dimensional model for the numerical simulation of casing-cement behavior is used to investigate residual strength in the perforated casing of ultra deep wells.The influence of the hole diameter,hole density an...A three-dimensional model for the numerical simulation of casing-cement behavior is used to investigate residual strength in the perforated casing of ultra deep wells.The influence of the hole diameter,hole density and phase angle on the residual strength of the casing under non-uniform stress and fracturing conditions is revealed through the consideration of different perforation parameters.It is shown that the residual strength of the casing increases with the hole diameter and periodically changes with the hole density;the phase angle is the main factor that affects the residual strength of the perforated casing,and the perforation should be avoided in the direction of the minimum principal stress to reduce stress concentration at the perforation hole.Moreover,as shown by a companion orthogonal experiment,the descending order of influence of the different influential parameters is:phase angle,hole diameter,hole density and the thickness of casing.展开更多
The successful execution and management of Offshore Software Maintenance Outsourcing(OSMO)can be very beneficial for OSMO vendors and the OSMO client.Although a lot of research on software outsourcing is going on,most...The successful execution and management of Offshore Software Maintenance Outsourcing(OSMO)can be very beneficial for OSMO vendors and the OSMO client.Although a lot of research on software outsourcing is going on,most of the existing literature on offshore outsourcing deals with the outsourcing of software development only.Several frameworks have been developed focusing on guiding software systemmanagers concerning offshore software outsourcing.However,none of these studies delivered comprehensive guidelines for managing the whole process of OSMO.There is a considerable lack of research working on managing OSMO from a vendor’s perspective.Therefore,to find the best practices for managing an OSMO process,it is necessary to further investigate such complex and multifaceted phenomena from the vendor’s perspective.This study validated the preliminary OSMO process model via a case study research approach.The results showed that the OSMO process model is applicable in an industrial setting with few changes.The industrial data collected during the case study enabled this paper to extend the preliminary OSMO process model.The refined version of the OSMO processmodel has four major phases including(i)Project Assessment,(ii)SLA(iii)Execution,and(iv)Risk.展开更多
Down-the-hole(DTH)hammer with casing while drilling(CWD)is a technology that has been proven to be able to alleviate many of the problems faced by complex formations.However,the drill bit is suffered from rapid wear,l...Down-the-hole(DTH)hammer with casing while drilling(CWD)is a technology that has been proven to be able to alleviate many of the problems faced by complex formations.However,the drill bit is suffered from rapid wear,low drilling efficiency,and high energy consumption due to the unreasonable tooth arrangement and impact energy selection in drilling process,which affect the application effect of this technology.ABAQUS software was used for numerical simulation of rock breaking behavior under impact load with the single,three,and five teeth arrangement drill bit respectively,to improve the application effect and solve the aforementioned technical problems.Based on the calculated parameters of tooth arrangement,we designed a novel drill bit for hard rocks and provided a theoretical basis for the tooth arrangement of largediameter drill bits.展开更多
BACKGROUND Pancreatic walled-off necrosis(WON)rarely causes critical gastric necrosis and perforation,which may develop when pancreatic WON squashes against the stomach.The Atlanta 2012 guidelines were introduced for ...BACKGROUND Pancreatic walled-off necrosis(WON)rarely causes critical gastric necrosis and perforation,which may develop when pancreatic WON squashes against the stomach.The Atlanta 2012 guidelines were introduced for acute pancreatitis and its related clinical entities.However,there are few reported cases describing the clinical course and resolution of pancreatic WON.CASE SUMMARY We report the case of a 45-year-old man who presented to the urgent emergency department with gastric perforation caused by a severe complication of pancreatic WON on computed tomography.The patient underwent an emergency distal pancreatectomy,splenectomy,and gastric wedge resection.Postoperative findings showed re-perforation of the gastric wall at a previously resected margin.Furthermore,endoscopic examination revealed an ulcerative area with a defect in the fundus.After diagnostic endoscopy,endoscopic vacuum-assisted closure was performed,and continuous suction was transferred over all tissues in contact with the sponge surface.The patient recovered without any further complications and was discharged in good condition at postoperative week 8.No recurrence occurred during the 6-mo follow-up period.CONCLUSION When managing a patient with serious gastric perforation complicated by pancreatic WON,a multidisciplinary treatment approach should be considered.展开更多
BACKGROUND Walled-off necrosis(WON)is a late complication of acute pancreatitis possibly with a fatal outcome.Even for WON spreading to the retroperitoneal space,percutaneous endoscopic necrosectomy(PEN)can be an alte...BACKGROUND Walled-off necrosis(WON)is a late complication of acute pancreatitis possibly with a fatal outcome.Even for WON spreading to the retroperitoneal space,percutaneous endoscopic necrosectomy(PEN)can be an alternate approach to surgical necrosectomy,particularly for the older individuals or patients with poor condition because of WON.CASE SUMMARY An 88-year-old man was admitted to our hospital with a jaundice.Endoscopic retrograde cholangiopancreatography(ERCP)was performed to improve jaundice;however,post-ERCP pancreatitis developed.The inflammation of pancreatitis spread widely from the right retroperitoneal cavity to the pelvis,and WON was formed 4 wk later.A percutaneous drainage tube was placed into the WON under computed tomography guidance.However,the drainage did not ameliorate clinical symptoms including fever,which assured less invasive necrosectomy.A metallic stent for the upper gastrointestinal(GI)tract was placed from the percutaneous drainage route.An upper GI endoscope was inserted into the inside of the WON through the metallic stent,and the necrotic tissues were bluntly removed with a snare forceps.Ten times of these necrosectomies resulted in the near-complete removal of necrotic tissues.These procedures consequently abated his fever and remarkable improvement in blood tests.CONCLUSION PEN for WON occurring in the retroperitoneal space was safe and effective for very old individuals.展开更多
BACKGROUND Prion diseases are a group of degenerative nerve diseases that are caused by infectious prion proteins or gene mutations.In humans,prion diseases result from mutations in the prion protein gene(PRNP).Only a...BACKGROUND Prion diseases are a group of degenerative nerve diseases that are caused by infectious prion proteins or gene mutations.In humans,prion diseases result from mutations in the prion protein gene(PRNP).Only a limited number of cases involving a specific PRNP mutation at codon 196(E196A)have been reported.The coexistence of Korsakoff syndrome in patients with Creutzfeldt-Jakob disease(CJD)caused by E196A mutation has not been documented in the existing literature.CASE SUMMARY A 61-year-old Chinese man initially presented with Korsakoff syndrome,followed by rapid-onset dementia,visual hallucinations,akinetic mutism,myoclonus,and hyperthermia.The patient had no significant personal or familial medical history.Magnetic resonance imaging of the brain revealed extensive hyperintense signals in the cortex,while positron emission tomography/computed tomography showed a diffuse reduction in cerebral cortex metabolism.Routine biochemical and microorganism testing of the cerebrospinal fluid(CSF)yielded normal results.Tests for thyroid function,human immunodeficiency virus,syphilis,vitamin B1 and B12 levels,and autoimmune rheumatic disorders were normal.Blood and CSF tests for autoimmune encephalitis and autoantibody-associated paraneoplastic syndrome yielded negative results.A test for 14-3-3 protein in the CSF yielded negative results.Whole-genome sequencing revealed a diseasecausing mutation in PRNP.The patient succumbed to the illness 11 months after the initial symptom onset.CONCLUSION Korsakoff syndrome,typically associated with alcohol intoxication,also manifests in CJD patients.Individuals with CJD along with PRNP E196A mutation may present with Korsakoff syndrome.展开更多
This work focus on the stress distribution of the casing-cement-formation(CCF)multilayer composite system,which is a borehole system with multiple casings and cement sheathes.Mostof the previous relevant studies are b...This work focus on the stress distribution of the casing-cement-formation(CCF)multilayer composite system,which is a borehole system with multiple casings and cement sheathes.Mostof the previous relevant studies are based on the traditional CCF system with the single casing and cement sheath,but these results are not adaptive to the CCF system multiple composite system.In this paper,the FEM numerical model of CCF multilayer composite system was constructed.Numerical simulations were calculated and compared with the system which consists of the single casing and cement sheath.Results show that the multilayer composite system possesses better performance.On this basis,the sensitivity analysis of main influence mechanical parameters such as in-situ stress,the elastic of cement sheathes and the elastic of formation are conducted.The cement sheath on the inside,namely cement sheath-1,is sensitive to its elastic modulus;meanwhile,the cement sheath on the outside,namely cement sheath-2,is not so sensitive to the elastic modulus of cement sheath-1.Cement sheath-1 and cement sheath-2 are all sensitive to the elastic modulus of cement sheath-2,and the mises stress of them has opposite trend to the elastic modulus of cement sheath-2.The proper values of elastic modulus of cement sheath-1 and cement sheath-2 are 5GPa and 5GPa to 30GPa,respectively.Under the in-situ stress ratio σh/σH=0.7,the maximum mises stress of cementsheath-1 and cement sheath-2 increase as the increase of σh,and they are nearly equal when σh=15GPa.This research can be helpful for the design and analysis of CCF multilayer composite system.展开更多
BACKGROUND Clear cell sarcoma(CCS)is a rare soft-tissue sarcoma.The most common metastatic sites for CCS are the lungs,bones and brain.CCS is highly invasive and mainly metastasizes to the lung,followed by the bone an...BACKGROUND Clear cell sarcoma(CCS)is a rare soft-tissue sarcoma.The most common metastatic sites for CCS are the lungs,bones and brain.CCS is highly invasive and mainly metastasizes to the lung,followed by the bone and brain;however,pancreatic metastasis is relatively rare.CASE SUMMARY We report on a rare case of CCS with pancreatic metastasis in a 47-year-old man.The patient had a relevant medical history 3 years ago,with abdominal pain as the main clinical manifestation.No abnormalities were observed on physical examination and the tumor was found on abdominal computed tomography.Based on the medical history and postoperative pathology,the patient was diagnosed with CCS with pancreatic metastasis.The patient was successfully treated with surgical interventions,including distal pancreatectomy and sple-nectomy.CONCLUSION This report summarizes the available treatment modalities for CCS and the importance of regular postoperative follow-up for patients with CCS.展开更多
文摘Casing wear and casing corrosion are serious problems affecting casing integrity failure in deep and ultra-deep wells.This paper aims to predict the casing burst strength with considerations of both wear and corrosion.Firstly,the crescent wear shape is simplified into three categories according to common mathematical models.Then,based on the mechano-electrochemical(M-E)interaction,the prediction model of corrosion depth is built with worn depth as the initial condition,and the prediction models of burst strength of the worn casing and corroded casing are obtained.Secondly,the accuracy of different prediction models is validated by numerical simulation,and the main influence factors on casing strength are obtained.At last,the theoretical models are applied to an ultra-deep well in Northwest China,and the dangerous well sections caused by wear and corrosion are predicted,and the corrosion rate threshold to ensure the safety of casing is obtained.The results show that the existence of wear defects results in a stress concentration and enhanced M-E interaction on corrosion depth growth.The accuracy of different mathematical models is different:the slot ring model is most accurate for predicting corrosion depth,and the eccentric model is most accurate for predicting the burst strength of corroded casing.The burst strength of the casing will be overestimated by more than one-third if the M-E interaction is neglected,so the coupling effect of wear and corrosion should be sufficiently considered in casing integrity evaluation.
基金financially supported by the National Natural Science Foundation of China (51674088)Natural Science Foundation of Heilongjiang Province of China (LH 2021E011)。
文摘Hydraulic rolling reshaper is an advanced reshaping tool to solve the problem of casing deformation,which has been widely used in recent years.When it is used for well repair operation,the reshaping force provided by ground devices is generally determined by experience.However,too large reshaping force may destroy the deformed casing,and too small reshaping force may also prolong the construction period and affect the repairing effect.In this paper,based on Hertz contact theory and elastic-plastic theory,combined with the process parameters of shaping,and considering the structural characteristics of the deformed casing and reshaper,we propose a mathematical model for calculating the reshaping force required for repairing deformed casing by hydraulic rolling reshaper.Meanwhile,the finite element model and numerical method of hydraulic rolling reshaper repairing deformed casing are established by using the finite element method,and the reliability of the mathematical model is verified by several examples.On this basis,the control variable method is used to investigate the influence of each parameter on the reshaping force,and the influence degree of each parameter is explored by orthogonal simulation test and Pearson correlation analysis.The research results not only provide an important theoretical basis for the prediction of reshaping force in on-site construction,but also provide a reference for the subsequent improvement of the shaping process.
基金the supports of project funded by China Postdoctoral Science Foundation(2023M743886)Project of Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province(YSK2023004)youth project funded by Shaanxi Province Natural Science Basic Research Program(2024JC-YBQN-0522)。
文摘The casing deformation prevention technology based on the optimization of cement slurry is proposed to reduce the casing deformation of shale oil and gas wells during hydraulic fracturing. In this paper, the fracture mechanism of hollow particles in cement sheath was firstly analyzed by discrete element method, and the effect of hollow particles in cement on casing deformation was investigated by laboratory experiment method. Finally, field test was carried out to verify the improvement effect of the casing deformation based on cement slurry modification. The results show that the formation displacement can be absorbed effectively by hollow particles inside the cement transferring the excessive deformation away from casing. The particles in the uncemented state provide deformation space during formation slipping. The casing with diameter of 139.7 mm could be passed through by bridge plug with the diameter of 99 mm when the mass ratio of particle/cement reaches 1:4. According to the field test feedback, the method based on optimization of cement slurry can effectively reduce the risk of casing deformation, and the recommended range of hollow microbeads content in the cement slurry is between 15% and 25%.
基金financially supported by National Natural Science foundation of China(Grant No.52104006)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(Grant No.2020CX040202)。
文摘To address the challenges associated with difficult casing running,limited annular space,and poor cementing quality in the completion of ultra-deep wells,the extreme line casing offers an effective solution over conventional casings.However,due to its smaller size,the joint strength of extreme line casing is reduced,which may cause failure when running in the hole.To address this issue,this study focuses on the CST-ZTΦ139.7 mm×7.72 mm extreme line casing and employs the elastic-plastic mechanics to establish a comprehensive analysis of the casing joint,taking into account the influence of geometric and material nonlinearities.A finite element model is developed to analyze the forces and deformations of the extreme line casing joint under axial tension and external collapse load.The model investigates the stress distribution of each thread tooth subjected to various tensile forces and external pressures.Additionally,the tensile strength and crushing strength of the extreme line casing joint are determined through both analytical and experimental approaches.The findings reveal that,under axial tensile load,the bearing surface of each thread tooth experiences uneven stress,with relatively high equivalent stress at the root of each thread tooth.The end thread teeth are valuable spots for failure.It is observed that the critical fracture axial load of thread decreases linearly with the increase of thread tooth sequence.Under external pressure,the circumferential stress is highest at the small end of the external thread,leading to yield deformation.The tensile strength of the joint obtained from the finite element model exhibits a relative error of less than 7%compared to the analytical and experimental values,proving the reliability of the finite element model.The tensile strength of the joint is 3091.9 k N.Moreover,in terms of anti-collapse capability,the joints demonstrate higher resistance to collapse compared to the casing body,which is consistent with the test results where the pipe body experiences collapse and failure while the joints remain intact during the experiment.The failure load of the casing body under external collapse pressure is 87.4 MPa.The present study provides a basic understanding of the mechanical strengths of extreme line casing joint.
基金supported by the National Natural Science Foundation of China(Grant No.11872121)。
文摘The double casing warhead with sandwiched charge is a novel fragmentation warhead that can produce two groups of fragments with different velocity,and the previous work has presented a calculation formula to determine the maximum fragment velocity.The current work builds on the published formula to further develop a formula for calculating the axial distribution characteristics of the fragment velocity.For this type of warhead,the simulation of the dispersion characteristics of the detonation products at different positions shows that the detonation products at the ends have a much larger axial velocity than those in the middle,and the detonation products have a greater axial dispersion velocity when they are closer to the central axis.The loading process and the fragment velocity vary with the axial position for both casing layers,and the total velocity of the fragments is the vector sum of the radial velocity and the axial velocity.At the same axial position,the acceleration time of the inner casing is greater than that of the outer casing.For the same casing,the fragments generated at the ends have a longer acceleration time than the fragments from the middle.The proposed formula is validated with the X-ray radiography results of the four warheads previously tested experimentally and the 3D smoothedparticle hydrodynamics numerical simulation results of several series of new warheads with different configurations.The formula can accurately and reliably calculate the fragment velocity when the lengthto-diameter ratio of the charge is greater than 1.5 and the thickness of the casing is less than 20%its inner radius.This work thus provides a key reference for the theoretical analysis and the design of warheads with multiple casings.
基金financially supported by the National Natural Science Foundation of China(No.52175352)the Xing Liao Ying Cai Project of Liaoning Province(No.XLYC2008036)the Shenyang Youth Innovation Talent Support Program(No.RC220429)。
文摘The important supporting component in a gas turbine is the casing,which has the characteristics of large size,complex structure,and thin wall.In the context of existing 3DP sand casting processes,casting crack defects are prone to occur.This leads to an increase in the scrap rate of casings,causing significant resource wastage.Additionally,the presence of cracks poses a significant safety hazard after the casings are put into service.The generation of different types of crack defects in stainless steel casings is closely related to casting stress and the high-temperature concession of the sand mold.Therefore,the types and causes of cracks in stainless steel casing products,based on their structural characteristics,were systematically analyzed.Various sand molds with different internal topology designs were printed using the 3DP technology to investigate the impact of sand mold structures on high-temperature concession.The optimal sand mold structure was used to cast casings,and the crack suppression effect was verified by analyzing its eddy current testing results.The experimental results indicate that the skeleton structure has an excellent effect on suppressing cracks in the casing.This research holds important theoretical and engineering significance in improving the quality of casing castings and reducing production costs.
基金financial support from the National Key Sci-Tech Major Special Item(No.2011ZX05026-001)Program for Changjiang Scholars and Innovative Research Team in University(IRT1086)
文摘This paper presents a theoretical method and a finite element method to describe wellhead movement and uncemented casing strength in offshore oil and gas wells.Parameters considered in the theoretical method include operating load during drilling and completion and the temperature field,pressure field and the end effect of pressure during gas production.The finite element method for multistring analysis is developed to simulate random contact between casings.The relevant finite element analysis scheme is also presented according to the actual procedures of drilling,completion and gas production.Finally,field cases are presented and analyzed using the proposed methods.These are four offshore wells in the South China Sea.The calculated wellhead growths during gas production are compared with measured values.The results show that the wellhead subsides during drilling and completion and grows up during gas production.The theoretical and finite element solutions for wellhead growth are in good agreement with measured values and the deviations of calculation are within 10%.The maximum von Mises stress on the uncemented intermediate casing occurs during the running of the oil tube.The maximum von Mises stress on the uncemented production casing,calculated with the theoretical method occurs at removing the blow-out-preventer (BOP) while that calculated with the finite element method occurs at gas production.Finite element solutions for von Mises stress are recommended and the uncemented casings of four wells satisfy strength requirements.
文摘The dynamic modal model analysis of the oil casing connection is done by finite element method (FEM), and the first nature frequency, the second nature frequency, the vibration mode shape and the time domain of the node displacement and the element stress variation in the thread connection are gotten. The Von.Mises stresses of the connection in the static and dynamic state are also studied. The results of calculation and analysis show: (1) because the maximum of static stress is at the coupling thread end of connection, the connection begins to thread off at the coupling thread end, which is in accord with the results of the thread off experiment in laboratory; (2) because the first nature frequency is very high, the probability of casing connection to be damaged from vibration is little; (3) the shock dynamic load makes casing connection begin to thread off at the tube thread end.
基金Supported by the PetroChina Scientific Research and Technology Development Project (2022KT1205)。
文摘Based on structural distribution and fault characteristics of the Luzhou block,southern Sichuan Basin,as well as microseismic,well logging and in-situ stress data,the casing deformation behaviors of deep shale gas wells are summarized,and the casing deformation mechanism and influencing factors are identified.Then,the risk assessment chart of casing deformation is plotted,and the measures for preventing and controlling casing deformation are proposed.Fracturing-activated fault slip is a main factor causing the casing deformation in deep shale gas wells in the Luzhou block.In the working area,the approximate fracture angle is primarily 10°-50°,accounting for 65.34%,and the critical pore pressure increment for fault-activation is 6.05-9.71 MPa.The casing deformation caused by geological factors can be prevented/controlled by avoiding the faults at risk and deploying wells in areas with low value of stress factor.The casing deformation caused by engineering factors can be prevented/controlled by:(1)keeping wells avoid faults with risks of activation and slippage,or deploying wells in areas far from the faulting center if such avoidance is impossible;(2)optimizing the wellbore parameters,for example,adjusting the wellbore orientation to reduce the shear force on casing to a certain extent and thus mitigate the casing deformation;(3)optimizing the casing program to ensure that the curvature radius of the curved section of horizontal well is greater than 200 m while the drilling rate of high-quality reservoirs is not impaired;(4)optimizing the fracturing parameters,for example,increasing the evasive distance,lowering the single-operation pressure,and increasing the stage length,which can help effectively reduce the risk of casing deformation.
基金supported by National Natural Science Foundation of China(11871006,11671271)。
文摘This paper investigates the optimal Birkhoff interpolation and Birkhoff numbers of some function spaces in space L∞[-1,1]and weighted spaces Lp,ω[-1,1],1≤p<∞,with w being a continuous integrable weight function in(-1,1).We proved that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal.We also show that the Lagrange interpolation algorithms based on the zeros of some polynomials are optimal when the function values of the two endpoints are included in the interpolation systems.
基金support from Sichuan Science and Technology Program(21JCQN0066)supported by National Natural Science Foundation of China(No.51774249).
文摘Large-scale sand fracturing is a necessary means in the efficient exploitation of shale gas/oil.However,in the process of fracturing operation,the sand carrying fluid and proppant easily causes scouring and wear to production strings,especially the casing perforation system,which damage the wellbore integrity and deformation to affect the subsequent fracturing.For this problem,taking the actual construction conditions and perforation technology of an oilfield in western China as an example,the structural parameters of the downhole string were measured and the wall thickness reduction model of casing perforation suitable for large-displacement sand fracturing in horizontal well section was established.With software ANSYS-FLUENT,the casing perforation erosion under the conditions of different displacements,sand content and perforation sand-passing quantity in the process of sand fracturing was simulated and calculated.The influences of three parameters on perforation erosion and expansion were analyzed and the prediction chart of the influences of three main control factors on perforation erosion and expansion was established.The perforation erosion images after fracturing construction were obtained with the downhole eagle perforation logging technology.The logging chart results were compared with the downhole eagle perforation data.The error between the established numerical simulation calculation charts and the real logging data was about 5%,indicating that the simulation charts were the valuable reference.
基金supported by the National Natural Science Foundation of China[51804061,51974052,51774063]the Academician Led Special Project of Chongqing Science and Technology Commission[cstc2017zdcy-yszxX0009]+1 种基金the Chongqing Research Program of Basic Research and Frontier Technology[cstc2019jcyj-msxmX0199,cstc2018jcyjAX0417]the Chongqing Education Committee foundation[KJQN201901544,KJZD-K201801501].
文摘An uncertainty analysis method is proposed for the assessment of the residual strength of a casing subjected to wear and non-uniform load in a deep well.The influence of casing residual stress,out-of-roundness and non-uniform load is considered.The distribution of multi-source parameters related to the residual anti extrusion strength and residual anti internal pressure strength of the casing after wear are determined using the probability theory.Considering the technical casing of X101 well in Xinjiang Oilfield as an example,it is shown that the randomness of casing wear depth,formation elastic modulus and formation Poisson’s ratio are the main factors that affect the uncertainty of residual strength.The wider the confidence interval is,the greater the uncertainty range is.Compared with the calculations resulting from the proposed uncertainty analysis method,the residual strength obtained by means of traditional single value calculation method is either larger or smaller,which leads to the conclusion that the residual strength should be considered in terms of a range of probabilities rather than a single value.
基金supported by the National Natural Science Foundation of China[52074326].
文摘A three-dimensional model for the numerical simulation of casing-cement behavior is used to investigate residual strength in the perforated casing of ultra deep wells.The influence of the hole diameter,hole density and phase angle on the residual strength of the casing under non-uniform stress and fracturing conditions is revealed through the consideration of different perforation parameters.It is shown that the residual strength of the casing increases with the hole diameter and periodically changes with the hole density;the phase angle is the main factor that affects the residual strength of the perforated casing,and the perforation should be avoided in the direction of the minimum principal stress to reduce stress concentration at the perforation hole.Moreover,as shown by a companion orthogonal experiment,the descending order of influence of the different influential parameters is:phase angle,hole diameter,hole density and the thickness of casing.
基金This research is fully funded byUniversiti Malaysia Terengganu under the research Grant(PGRG).
文摘The successful execution and management of Offshore Software Maintenance Outsourcing(OSMO)can be very beneficial for OSMO vendors and the OSMO client.Although a lot of research on software outsourcing is going on,most of the existing literature on offshore outsourcing deals with the outsourcing of software development only.Several frameworks have been developed focusing on guiding software systemmanagers concerning offshore software outsourcing.However,none of these studies delivered comprehensive guidelines for managing the whole process of OSMO.There is a considerable lack of research working on managing OSMO from a vendor’s perspective.Therefore,to find the best practices for managing an OSMO process,it is necessary to further investigate such complex and multifaceted phenomena from the vendor’s perspective.This study validated the preliminary OSMO process model via a case study research approach.The results showed that the OSMO process model is applicable in an industrial setting with few changes.The industrial data collected during the case study enabled this paper to extend the preliminary OSMO process model.The refined version of the OSMO processmodel has four major phases including(i)Project Assessment,(ii)SLA(iii)Execution,and(iv)Risk.
基金Project of National Key Research and Development of China(No.2018YFC1505303).
文摘Down-the-hole(DTH)hammer with casing while drilling(CWD)is a technology that has been proven to be able to alleviate many of the problems faced by complex formations.However,the drill bit is suffered from rapid wear,low drilling efficiency,and high energy consumption due to the unreasonable tooth arrangement and impact energy selection in drilling process,which affect the application effect of this technology.ABAQUS software was used for numerical simulation of rock breaking behavior under impact load with the single,three,and five teeth arrangement drill bit respectively,to improve the application effect and solve the aforementioned technical problems.Based on the calculated parameters of tooth arrangement,we designed a novel drill bit for hard rocks and provided a theoretical basis for the tooth arrangement of largediameter drill bits.
基金the Clinical Research Grant from Pusan National University Hospital in 2023.
文摘BACKGROUND Pancreatic walled-off necrosis(WON)rarely causes critical gastric necrosis and perforation,which may develop when pancreatic WON squashes against the stomach.The Atlanta 2012 guidelines were introduced for acute pancreatitis and its related clinical entities.However,there are few reported cases describing the clinical course and resolution of pancreatic WON.CASE SUMMARY We report the case of a 45-year-old man who presented to the urgent emergency department with gastric perforation caused by a severe complication of pancreatic WON on computed tomography.The patient underwent an emergency distal pancreatectomy,splenectomy,and gastric wedge resection.Postoperative findings showed re-perforation of the gastric wall at a previously resected margin.Furthermore,endoscopic examination revealed an ulcerative area with a defect in the fundus.After diagnostic endoscopy,endoscopic vacuum-assisted closure was performed,and continuous suction was transferred over all tissues in contact with the sponge surface.The patient recovered without any further complications and was discharged in good condition at postoperative week 8.No recurrence occurred during the 6-mo follow-up period.CONCLUSION When managing a patient with serious gastric perforation complicated by pancreatic WON,a multidisciplinary treatment approach should be considered.
文摘BACKGROUND Walled-off necrosis(WON)is a late complication of acute pancreatitis possibly with a fatal outcome.Even for WON spreading to the retroperitoneal space,percutaneous endoscopic necrosectomy(PEN)can be an alternate approach to surgical necrosectomy,particularly for the older individuals or patients with poor condition because of WON.CASE SUMMARY An 88-year-old man was admitted to our hospital with a jaundice.Endoscopic retrograde cholangiopancreatography(ERCP)was performed to improve jaundice;however,post-ERCP pancreatitis developed.The inflammation of pancreatitis spread widely from the right retroperitoneal cavity to the pelvis,and WON was formed 4 wk later.A percutaneous drainage tube was placed into the WON under computed tomography guidance.However,the drainage did not ameliorate clinical symptoms including fever,which assured less invasive necrosectomy.A metallic stent for the upper gastrointestinal(GI)tract was placed from the percutaneous drainage route.An upper GI endoscope was inserted into the inside of the WON through the metallic stent,and the necrotic tissues were bluntly removed with a snare forceps.Ten times of these necrosectomies resulted in the near-complete removal of necrotic tissues.These procedures consequently abated his fever and remarkable improvement in blood tests.CONCLUSION PEN for WON occurring in the retroperitoneal space was safe and effective for very old individuals.
文摘BACKGROUND Prion diseases are a group of degenerative nerve diseases that are caused by infectious prion proteins or gene mutations.In humans,prion diseases result from mutations in the prion protein gene(PRNP).Only a limited number of cases involving a specific PRNP mutation at codon 196(E196A)have been reported.The coexistence of Korsakoff syndrome in patients with Creutzfeldt-Jakob disease(CJD)caused by E196A mutation has not been documented in the existing literature.CASE SUMMARY A 61-year-old Chinese man initially presented with Korsakoff syndrome,followed by rapid-onset dementia,visual hallucinations,akinetic mutism,myoclonus,and hyperthermia.The patient had no significant personal or familial medical history.Magnetic resonance imaging of the brain revealed extensive hyperintense signals in the cortex,while positron emission tomography/computed tomography showed a diffuse reduction in cerebral cortex metabolism.Routine biochemical and microorganism testing of the cerebrospinal fluid(CSF)yielded normal results.Tests for thyroid function,human immunodeficiency virus,syphilis,vitamin B1 and B12 levels,and autoimmune rheumatic disorders were normal.Blood and CSF tests for autoimmune encephalitis and autoantibody-associated paraneoplastic syndrome yielded negative results.A test for 14-3-3 protein in the CSF yielded negative results.Whole-genome sequencing revealed a diseasecausing mutation in PRNP.The patient succumbed to the illness 11 months after the initial symptom onset.CONCLUSION Korsakoff syndrome,typically associated with alcohol intoxication,also manifests in CJD patients.Individuals with CJD along with PRNP E196A mutation may present with Korsakoff syndrome.
基金the Independent Innovation Research Program of China University of Petroleum(East China)(Grant No.27RA2215005)the National Key Research and Development Program of China(Grant No.2017YFC0307604).
文摘This work focus on the stress distribution of the casing-cement-formation(CCF)multilayer composite system,which is a borehole system with multiple casings and cement sheathes.Mostof the previous relevant studies are based on the traditional CCF system with the single casing and cement sheath,but these results are not adaptive to the CCF system multiple composite system.In this paper,the FEM numerical model of CCF multilayer composite system was constructed.Numerical simulations were calculated and compared with the system which consists of the single casing and cement sheath.Results show that the multilayer composite system possesses better performance.On this basis,the sensitivity analysis of main influence mechanical parameters such as in-situ stress,the elastic of cement sheathes and the elastic of formation are conducted.The cement sheath on the inside,namely cement sheath-1,is sensitive to its elastic modulus;meanwhile,the cement sheath on the outside,namely cement sheath-2,is not so sensitive to the elastic modulus of cement sheath-1.Cement sheath-1 and cement sheath-2 are all sensitive to the elastic modulus of cement sheath-2,and the mises stress of them has opposite trend to the elastic modulus of cement sheath-2.The proper values of elastic modulus of cement sheath-1 and cement sheath-2 are 5GPa and 5GPa to 30GPa,respectively.Under the in-situ stress ratio σh/σH=0.7,the maximum mises stress of cementsheath-1 and cement sheath-2 increase as the increase of σh,and they are nearly equal when σh=15GPa.This research can be helpful for the design and analysis of CCF multilayer composite system.
文摘BACKGROUND Clear cell sarcoma(CCS)is a rare soft-tissue sarcoma.The most common metastatic sites for CCS are the lungs,bones and brain.CCS is highly invasive and mainly metastasizes to the lung,followed by the bone and brain;however,pancreatic metastasis is relatively rare.CASE SUMMARY We report on a rare case of CCS with pancreatic metastasis in a 47-year-old man.The patient had a relevant medical history 3 years ago,with abdominal pain as the main clinical manifestation.No abnormalities were observed on physical examination and the tumor was found on abdominal computed tomography.Based on the medical history and postoperative pathology,the patient was diagnosed with CCS with pancreatic metastasis.The patient was successfully treated with surgical interventions,including distal pancreatectomy and sple-nectomy.CONCLUSION This report summarizes the available treatment modalities for CCS and the importance of regular postoperative follow-up for patients with CCS.