The distribution of residual austenite in the laser hardening laver on the gray cast iron and the change in the amount of residual austenite during sliding wearing have been investigated by X-ray diffractometer.The th...The distribution of residual austenite in the laser hardening laver on the gray cast iron and the change in the amount of residual austenite during sliding wearing have been investigated by X-ray diffractometer.The thin foils of the hardening layer worn down have been observed by electron microscopy.It was revealed that two types of martensite are strain-induced by slid- ing wearing under load of 1.72 MPa on the hardening layer of residual austenite.The strain induced martensite is profitable to improve the sliding wearing resistance.展开更多
The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new...The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new technologies based on subcooled fluid boiling.Accordingly,in the present study,experiments based on subcooled flow boiling of 50/50 by volume mixture of ethylene glycol and water coolant(EG/W)in a rectangular channel heated by a cast iron block are presented.Different degrees of subcooling,velocity and pressure conditions are examined.Comparison of three empirical reference models shows that noticeable deviations occur especially when low bulk subcooling and velocity conditions are considered.On the basis of the experimental data,a modified power-type wall heat flux model is developed and its ability to represent adequately reality is tested through numerical simulations against a reference rig case and a practical diesel engine.Computational results show that this modified model can effectively be used for practical engine cooling system design.展开更多
A quantitative model is proposed to describe the thermal conductivity of alloyed pearlitic gray cast iron. The model is built by combining the computational thermodynamics and effective medium theory. The volume fract...A quantitative model is proposed to describe the thermal conductivity of alloyed pearlitic gray cast iron. The model is built by combining the computational thermodynamics and effective medium theory. The volume fractions and concentrations of precipitated phases in as-cast structure are estimated in consideration of partial and para-equilibrium. The conductivity of alloyed ferrite is calculated, taking into account the electronic and vibrational contributions of alloying elements. The model provides a good agreement with microstructure analysis and measured thermal conductivity. The influence of common alloying elements was discussed from the viewpoint of precipitation of phases and scattering of alloying atoms. This model can also be used as a numerical tool for designing the pearlitic gray cast irons with high thermal conductivity and high tensile strength.展开更多
文摘The distribution of residual austenite in the laser hardening laver on the gray cast iron and the change in the amount of residual austenite during sliding wearing have been investigated by X-ray diffractometer.The thin foils of the hardening layer worn down have been observed by electron microscopy.It was revealed that two types of martensite are strain-induced by slid- ing wearing under load of 1.72 MPa on the hardening layer of residual austenite.The strain induced martensite is profitable to improve the sliding wearing resistance.
基金This work was supported by the National Key Research and Development Project of China(Grant No.2017YFB0103504)National Natural Science Foundation of China(Grant No.51576116).
文摘The increasing demand of cooling in internal combustion engines(ICE)due to engine downsizing may require a shift in the heat removal method from the traditional single phase liquid convection to the application of new technologies based on subcooled fluid boiling.Accordingly,in the present study,experiments based on subcooled flow boiling of 50/50 by volume mixture of ethylene glycol and water coolant(EG/W)in a rectangular channel heated by a cast iron block are presented.Different degrees of subcooling,velocity and pressure conditions are examined.Comparison of three empirical reference models shows that noticeable deviations occur especially when low bulk subcooling and velocity conditions are considered.On the basis of the experimental data,a modified power-type wall heat flux model is developed and its ability to represent adequately reality is tested through numerical simulations against a reference rig case and a practical diesel engine.Computational results show that this modified model can effectively be used for practical engine cooling system design.
文摘A quantitative model is proposed to describe the thermal conductivity of alloyed pearlitic gray cast iron. The model is built by combining the computational thermodynamics and effective medium theory. The volume fractions and concentrations of precipitated phases in as-cast structure are estimated in consideration of partial and para-equilibrium. The conductivity of alloyed ferrite is calculated, taking into account the electronic and vibrational contributions of alloying elements. The model provides a good agreement with microstructure analysis and measured thermal conductivity. The influence of common alloying elements was discussed from the viewpoint of precipitation of phases and scattering of alloying atoms. This model can also be used as a numerical tool for designing the pearlitic gray cast irons with high thermal conductivity and high tensile strength.