期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Relieving segregation in twin-roll cast Mg-8Al-2Sn-1Zn alloys via controlled rolling 被引量:6
1
作者 Shao-You Zhang Cheng Wang +4 位作者 Hong Ning Tong Wang Cheng-Cheng Zhang Zhi-Zheng Yang Hui-Yuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期254-265,共12页
Twin-roll casting(TRC)of Mg alloys with high Al content has unique advantages and broad development prospects.However,the severe segregation of high-alloyed Mg caused by TRC technology is difficult to solve at present... Twin-roll casting(TRC)of Mg alloys with high Al content has unique advantages and broad development prospects.However,the severe segregation of high-alloyed Mg caused by TRC technology is difficult to solve at present,which restricts its practical application.In this work,the homogenization of coarse segregated phases in a twin-roll cast Mg-8Al-2Sn-1Zn(ATZ821)alloy was successfully achieved by a method combining solid-solution heat treatment and controlled rolling,which is suitable for industrial-scale production.In addition,the evolution of the microstructure was studied in detail.It was found that phases dynamically precipitated and dissolved repeatedly during the hot rolling process,and the evolution of entire second phases can be classified into three stages,i.e.,the net dissolution,balancing and net precipitation stages.During the process,the large-size chain-like eutectic phases evolved into a fine and nearly spherical(∼0.4μm)morphology that was uniformly dispersed in the Mg-matrix due to the thermodynamic coupling and the Ostwald ripening effect.Moreover,a fine grain microstructure(∼4μm)was obtained.The formidable segregation problem of twin-roll cast Mg alloys with high Al content was solved,which is an important finding for the industrial application of high-alloyed twin-roll cast sheets.©2020 Published by Elsevier B.V.on behalf of Chongqing University. 展开更多
关键词 Twin-roll cast mg alloys Segregated phase Microstructure evolution Industrial production
下载PDF
Microstructures and corrosion behaviors of Al−6.5Si−0.45Mg−xSc casting alloy 被引量:1
2
作者 Yu-kun MA Ming-xing WANG +1 位作者 Ya-nan LIU Bin CAI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第2期424-435,共12页
The microstructures and corrosion behaviors of the Al−6.5Si−0.45Mg casting alloys with the addition of Sc were investigated by using scanning electron microscopy,X-ray diffraction,electrochemical measurement technique... The microstructures and corrosion behaviors of the Al−6.5Si−0.45Mg casting alloys with the addition of Sc were investigated by using scanning electron microscopy,X-ray diffraction,electrochemical measurement techniques and immersion corrosion tests and compared with those of Sr-modified alloy.The results show that Sc has evident refining and modifying effects on the primaryα(Al)and the eutectic Si phase of the alloy,and the effects can be enhanced with the increase of Sc content.When the Sc content is increased to 0.58 wt.%,its modifying effect on the eutectic Si is almost same as that of Sr.Sc can improve the corrosion resistance of the test alloy in NaCl solution when compared with Sr,but the excessively high Sc content cannot further increase the corrosion resistance of the alloy.The corrosion of the alloys mainly occurs in the eutectic region of the alloy,and mostly the eutecticα(Al)is dissolved.This confirms that Si phase is more noble thanα(Al)phase,and the galvanic couplings can be formed between the eutectic Si andα(Al)phases. 展开更多
关键词 Al−Si−mg casting alloy scandium(Sc) α(Al)phase eutectic Si phase corrosion resistance
下载PDF
Formation and thermal stability of connected hard skeleton structure in ATX525 cast alloys 被引量:1
3
作者 Ke-qiang Qiu Hui-han Zhang +2 位作者 Yan Re Ying-lei Ren Rong-de Li 《China Foundry》 SCIE 2015年第6期412-417,共6页
The formation and the thermal stability of a connected hard skeleton structure(CHSS) in the matrix of Mg-5Al-2Sn-5Ca(ATX525) alloy were investigated by using X-ray diffractometer, scanning electron microscopy, differe... The formation and the thermal stability of a connected hard skeleton structure(CHSS) in the matrix of Mg-5Al-2Sn-5Ca(ATX525) alloy were investigated by using X-ray diffractometer, scanning electron microscopy, differential scanning calorimeter, creep tester and isothermal treatment method. The results indicated that the CHSS composed of Mg2(Al,Ca) and Al2 Ca intermetallics was formed into a typical eutectic structure and no obvious change occurred when the samples were isothermally treated at 250 °C for 96 h and 350 °C for 72 h, respectively. It became a chained structure when isothermally treated at 450 °C for 48 h. The dissolution and reconstruction processes, however, were observed for the CHSS when the processing temperature was up to 550 °C. The creep life at the stress-temperature condition of 50MPa/200°C for the alloy treated at 450 °C for 48 h was as high as 510 h, and the strain at creep time of 100 h was as low as 0.03%, which indicated that the present alloy has not only a good thermal stability, but also a better heat resistance. 展开更多
关键词 mg cast alloy connected hard skeleton structure isothermal treatment thermal stability heat resistance
下载PDF
Effect of Cu addition on overaging behaviour,room and high temperature tensile and fatigue properties of A357 alloy 被引量:1
4
作者 Lorella CESCHINI Simone MESSIERI +3 位作者 Alessandro MORRI Salem SEIFEDDINE Stefania TOSCHI Mohammadreza ZAMANI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期2861-2878,共18页
The aims of the present work are to evaluate the overaging behaviour of the investigated Cu-enriched alloy and to assess its mechanical behaviour,in terms of the tensile and fatigue strength,at room temperature and at... The aims of the present work are to evaluate the overaging behaviour of the investigated Cu-enriched alloy and to assess its mechanical behaviour,in terms of the tensile and fatigue strength,at room temperature and at 200℃,and to correlate the mechanical performance with its microstructure,in particular with the secondary dendrite arm spacing(SDAS).The mechanical tests carried out on the overaged alloy at 200℃ indicate that the addition of about 1.3 wt.%Cu to the A357 alloy enables to maintain ultimate tensile strength and yield strength values close to 210 and 200 MPa,respectively,and fatigue strength at about 100 MPa.Compared to the quaternary(Al−Si−Cu−Mg)alloy C355,the A357−Cu alloy has greater mechanical properties at room temperature and comparable mechanical behaviour in the overaged condition at 200℃.The microstructural analyses highlight that SDAS affects the mechanical behaviour of the peak-aged A357−Cu alloy at room temperature,while its influence is negligible on the tensile and fatigue properties of the overaged alloy at 200℃. 展开更多
关键词 A357 alloy C355 alloy Al−Si−Cu−mg casting alloy tensile property fatigue behaviour high temperature overaging
下载PDF
Effects of Solution Treatment on the Microstructure,Tensile Properties,and Impact Toughness of an Al–5.0Mg–3.0Zn–1.0Cu Cast Alloy 被引量:4
5
作者 Hua-Ping Tang Qu-Dong Wang +6 位作者 Colin Luo Chuan Lei Tian-Wen Liu Zhong-Yang Li Kui Wang Hai-Yan Jiang Wen-Jiang Ding 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第1期98-110,共13页
This study investigates the eff ect of solution treatment(at 470°C for 0–48 h)on the microstructural evolution,tensile properties,and impact properties of an Al–5.0Mg–3.0Zn–1.0Cu(wt%)alloy prepared by permane... This study investigates the eff ect of solution treatment(at 470°C for 0–48 h)on the microstructural evolution,tensile properties,and impact properties of an Al–5.0Mg–3.0Zn–1.0Cu(wt%)alloy prepared by permanent gravity casting.The results show that the as-cast microstructure consists ofα-Al dendrites and a network-like pattern of T-Mg32(AlZnCu)49 phases.Most of the T-phases were dissolved within 24 h at 470℃;and a further prolonging of solution time resulted in a rapid growth ofα-Al grains.No transformation from the T-phase to the S-Al2CuMg phase was discovered in this alloy.Both the tensile properties and impact toughness increased quickly,reached a maximum peak value,and decreased gradually as the solution treatment proceeded.The impact toughness is more closely related to the elongation,and the relationship between impact toughness and elongation appears to obey an equation:IT=8.43 EL-3.46.After optimal solution treatment at 470℃for 24 h,this alloy exhibits excellent mechanical properties with the ultimate tensile strength,yield strength,elongation and impact toughness being 431.6 MPa,270.1 MPa,19.4%and 154.7 kJ/m^(2),which are comparable to that of a wrought Al–6.0 Mg–0.7 Mn alloy(5E06,a 5 xxx aluminum alloy).Due to its excellent comprehensive combination of mechanical properties,this cast alloy has high potential for use in components which require medium strength,high ductility and high toughness. 展开更多
关键词 Al–mg–Zn–Cu cast alloys T-mg32(AlZn)49 PHASE S-Al2Cumg phase Impact toughness MECHANICAL properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部