期刊文献+
共找到54,095篇文章
< 1 2 250 >
每页显示 20 50 100
基于ProCAST的一模多腔YL112铝合金压铸件数值模拟及工艺优化 被引量:1
1
作者 朱嘉伟 张文达 +3 位作者 刘云 刘士渊 侯建斌 陈利华 《热加工工艺》 北大核心 2024年第8期113-117,共5页
针对YL112压铸铝合金一模多铸产品的组织性能均一性需求,采用ProCAST软件对典型一模多铸工艺进行模拟,比较了两种不同充型顺序的压铸方案。结果表明:基于顺序凝固一模多腔压铸件由于充型与凝固过程的温度场分布不均,导致近浇口端铸件出... 针对YL112压铸铝合金一模多铸产品的组织性能均一性需求,采用ProCAST软件对典型一模多铸工艺进行模拟,比较了两种不同充型顺序的压铸方案。结果表明:基于顺序凝固一模多腔压铸件由于充型与凝固过程的温度场分布不均,导致近浇口端铸件出现明显缩松缩孔缺陷,造成铸件性能均一性差。后续采用等流程浇注系统,实现一模多腔铸件同时充型凝固过程,改善了铸件温度场分布,减少了工艺缺陷。经过实际生产验证,获得了组织性能均一性好的压铸件。 展开更多
关键词 YL112压铸铝合金 凝固 数值模拟 显微组织
下载PDF
Strength and elastic modulus enhancement in Mg-Li-Al matrix composites reinforced by ex situ TiB2 particles via stir casting 被引量:1
2
作者 Jiawei Sun Dehua Ding +4 位作者 Wencai Liu Guohua Wu Hongjie Liu Guangling Wei Hezhou Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3574-3588,共15页
A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasib... A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasible to prepare this material under stir casting conditions with good dispersion.The microstructure and mechanical properties of the composites prepared by different pretreatment methods were analyzed in detail.The TiB_(2) particles in the Al-TiB_(2)/LA103 composite using the pretreatment process were uniformly distributed in the microstructure due to the formation of highly wettable core-shell units in the melt.Compared with the matrix alloys,the Al-TiB_(2)/LA103 composite exhibited effective strength and elastic modulus improvements while maintaining acceptable elongation.The strengthening effect in the composites was mainly attributed to the strong grain refining effect of TiB2.This work shows a balance of high specific modulus(36.1 GPa·cm^(3)·g^(-1))and elongation(8.4%)with the conventional stir casting path,which is of considerable application value. 展开更多
关键词 Mg-Li composite Stir casting Elastic modulus Microstructure Mechanical properties
下载PDF
Data-driven casting defect prediction model for sand casting based on random forest classification algorithm 被引量:1
3
作者 Bang Guan Dong-hong Wang +3 位作者 Da Shu Shou-qin Zhu Xiao-yuan Ji Bao-de Sun 《China Foundry》 SCIE EI CAS CSCD 2024年第2期137-146,共10页
The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was p... The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%. 展开更多
关键词 sand casting process data-driven method classification model quality prediction feature importance
下载PDF
基于ProCAST的铜合金通海阀铸造工艺优化
4
作者 李莹 李林翰 +1 位作者 贾延琳 肖柱 《精密成形工程》 北大核心 2024年第9期32-40,共9页
目的结合ZCuAl7-7-4-2合金的铸造特性,研究复杂薄壁铸件通海阀的铸造成形工艺,探究初始浇注方案下的充型、凝固规律,优化工艺并提出合理的铸造工艺方案。方法根据通海阀的结构特点,设计出底注雨淋式浇注系统,并利用流体力学理论和截面... 目的结合ZCuAl7-7-4-2合金的铸造特性,研究复杂薄壁铸件通海阀的铸造成形工艺,探究初始浇注方案下的充型、凝固规律,优化工艺并提出合理的铸造工艺方案。方法根据通海阀的结构特点,设计出底注雨淋式浇注系统,并利用流体力学理论和截面积比值法确定浇注系统的具体参数,使用ProCAST软件研究不同工艺参数、冒口尺寸对铸件质量的影响,以得到最优的浇注方案。结果在底注雨淋式浇注系统的充型过程中,金属液温度分布均匀、流速平稳,凝固顺序合理,所得铸件缺陷较少,其中疏松缩孔体积为0.63 mm3,且集中分布在阀盖处。优化浇注温度和浇注速度能够有效减少铸造缺陷,优化出的最佳浇注工艺参数组合如下:浇注温度为1180℃,浇注速度为3.5 kg/s。结合该模拟结果改进冒口尺寸后,彻底消除了铸件的铸造缺陷。结论优化工艺参数和浇注系统设计能够有效提高铸件的生产质量,便于铸件的一次成形,对实际生产提供指导。 展开更多
关键词 通海阀 数值模拟 铸造系统 PROcast 铸造工艺优化
下载PDF
基于Cast Designer的壳体铸件铸造工艺设计及智能优化
5
作者 巩红涛 张怀章 +3 位作者 杨磊 杨国超 马永健 李丰 《热加工工艺》 北大核心 2024年第5期103-105,共3页
使用Cast Designer铸造仿真分析软件,通过可铸性评估系统DFM,完成浇冒系统的辅助设计,然后使用DOE技术和基于遗传算法GA的智能优化技术,评估不同工艺设计方案与铸造过程参数对壳体铸件质量的影响,分析在不同的冒口、冷铁和浇注温度条件... 使用Cast Designer铸造仿真分析软件,通过可铸性评估系统DFM,完成浇冒系统的辅助设计,然后使用DOE技术和基于遗传算法GA的智能优化技术,评估不同工艺设计方案与铸造过程参数对壳体铸件质量的影响,分析在不同的冒口、冷铁和浇注温度条件下得料率和缩孔量的关系。根据对DOE模拟结果的分析,发现顶冒口和侧冒口尺寸是影响得料率和缩孔量的关键因数,再利用遗传算法GA选择最佳设计方案和参数。通过帕累托曲线得到了生产壳体铸件的最优工艺方案。 展开更多
关键词 cast Designer 缩孔 质量控制 仿真分析
下载PDF
CAST池活性污泥除磷微生物群落特征研究
6
作者 张华俊 肖暘 +3 位作者 张俊涛 王英实 袁敏忠 袁维芳 《给水排水》 CSCD 北大核心 2024年第6期36-42,共7页
为掌握霞山水质净化厂CAST池各反应段活性污泥除磷微生物群落结构特征,特对CAST池内不同区活性污泥进行采样并DNA提取后高通量测序分析,结果表明CAST池各阶段活性污泥富集了丰富的具有良好除磷功能的菌。门水平上的优势除磷菌有变形杆菌... 为掌握霞山水质净化厂CAST池各反应段活性污泥除磷微生物群落结构特征,特对CAST池内不同区活性污泥进行采样并DNA提取后高通量测序分析,结果表明CAST池各阶段活性污泥富集了丰富的具有良好除磷功能的菌。门水平上的优势除磷菌有变形杆菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、放线菌门(Actinobacteriota)、酸杆菌门(Acidobacteriota)、厚壁菌门(Firmicutes)。属水平上的优势除磷菌为Norank_f_Caldilineaceae、Candidatus_Competibacter、Norank_f_norank_o_Saccharimonadales、Tetrasphaera、Norank_f_Blastocatellaceae等。该CAST池活性污泥中存在聚磷菌与聚糖菌共存的现象且两者相对丰度较高,两者的竞争及环境条件变化会导致除磷效果的波动。主反应区曝气使得好氧聚磷菌Tetrasphaera相对丰度远高于生物选择区和兼氧区。反硝化聚磷菌Streptococcus和Acinetobacter在生物选择区中相对丰度远高于兼氧区和主反应区。反硝化聚磷菌在生物选择区厌氧段更加适宜其生长导致其相对丰度较高,能增强该阶段除磷效果。在实际生产中应着力改善合适环境条件提升聚磷菌生物量以保障除磷效果。 展开更多
关键词 cast 活性污泥 高通量测序 除磷微生物
下载PDF
Intelligent casting:Empowering the future foundry industry
7
作者 Jin-wu Kang Bao-lin Liu +1 位作者 Tao Jing Hou-fa Shen 《China Foundry》 SCIE EI CAS CSCD 2024年第5期409-426,共18页
Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which... Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which attracts more and more attention from the academic and industry communities.In this paper,the main features of casting technology were briefly summarized and forecasted,and the recent developments of key technologies and the innovative efforts made in promoting intelligent casting process were discussed.Moreover,the technical visions of intelligent casting process were also put forward.The key technologies for intelligent casting process comprise 3D printing technologies,intelligent mold technologies and intelligent process control technologies.In future,the intelligent mold that derived from mold with sensors,control devices and actuators will probably incorporate the Internet of Things,online inspection,embedded simulation,decision-making and control system,and other technologies to form intelligent cyber-physical casting system,which may pave the way to realize intelligent casting.It is promising that the intelligent casting process will eventually achieve the goal of real-time process optimization and full-scale control,with the defects,microstructure,performance,and service life of the fabricated castings can be accurately predicted and tailored. 展开更多
关键词 intelligent casting 3D printing intelligent mold process control cyber-physical casting system embedded simulation
下载PDF
Thermal and mechanical behavior of casting copper alloy wheel during wheel and belt continuous casting process
8
作者 Kun Gao Yan Peng 《China Foundry》 SCIE EI CAS CSCD 2024年第1期82-90,共9页
To investigate the thermal and mechanical behavior of casting wheel,a two-dimensional thermoelastic-plastic finite element model was used to predict the temperature,stress and distortion distribution of the casting wh... To investigate the thermal and mechanical behavior of casting wheel,a two-dimensional thermoelastic-plastic finite element model was used to predict the temperature,stress and distortion distribution of the casting wheel during the wheel and belt continuous casting process.The effects of grinding thickness and casting speed on the thermal and mechanical behaviors of the center of the hot face of the casting wheel were discussed in detail.In each rotation,the casting wheel passes through four different spray zones.The results show that the temperature distribution of the casting wheel in different spray zones is similar,the temperature of the hot face is the highest and the temperature reaches the peak in the spray zoneⅢ.The stress and distortion depend on the temperature distribution,and the maximum stress and distortion of the hot face are 358.2 MPa and 1.82 mm,respectively.The temperature at the center of the hot face decreases with increasing grinding thickness and increases with increasing casting speed. 展开更多
关键词 casting wheel finite element model grinding thickness casting speed hot face spray zones
下载PDF
Dust-Holding Capacity and Bio-Chemical Changes of Plant Species Growing in an Around Opencast Mining Area of Bundelkhand Region of Uttar Pradesh, India
9
作者 Priyanka Singh Amit Pal 《American Journal of Plant Sciences》 CAS 2024年第8期677-698,共22页
The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bu... The present study has been carried out on a total of 50 available plant species to assess their dust-capturing capacity and biochemical performances in and around open cast granite mine areas of Jhansi district and Bundelkhand University campus treated as control site. Plant species existing under a polluted environment for a long time may be considered as potentially resistant species and recommended for green belt design in mining areas, especially to cope with dust pollution. Results showed the pollution level, especially of mining-originated dust particles holding capacity of leaves and effects of different biochemical parameters (Total Chlorophyll, Protein and Carotenoid) of existing plant species both from mining areas as well as from Bundelkhand University campus. Based on their performances, Tectona grandis L., Ficus hispida L., Calotropis procera Aiton., Butea monosperma Lam. and Ficus benghalensis L., etc. are highly tolerant species while Ficus infectoria L., Artocarpus heterophyllus Lam., Ipomoea purpurea L., Allianthus excelsa Roxb. and Bauhinia variegata L. are intermediate tolerant species. T. grandis had shown the highest dust-holding capacity (2.566 ± 0.0004 mg/cm2) whereas Albizia procera (0.018 ± 0.0002 mg/cm2) was found to be the lowest dust-holding capacity. Our findings also showed that the T. grandis and F. hispida have significant dust deposition with minimal effect of dust on their leaf chlorophyll (17.447 ± 0.019 mg/g and 14.703 ± 0.201 mg/g), protein (0.699 ± 0.001 mg/g and 0.604 ± 0.002 mg/g) and carotenoid (0.372 ± 0.003 mg/g and 0.354 ± 0.003 mg/g) content respectively among all selected plant species. Therefore, in the present investigation, plant species with high tolerance to high dust-holding capacity on their leaf surfaces are preferable for green corridors as open cast granite mines and their adjacent areas. 展开更多
关键词 Bundelkhand Region Biochemical Changes Dust-Holding Capacity Chlorophyll Content Open cast Granite Mining
下载PDF
Ultra-large aluminum shape casting:Opportunities and challenges
10
作者 Qi-gui Wang Andy Wang Jason Coryell 《China Foundry》 SCIE EI CAS CSCD 2024年第5期397-408,共12页
Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural comp... Ultra-large aluminum shape castings have been increasingly used in automotive vehicles,particularly in electric vehicles for light-weighting and vehicle manufacturing cost reduction.As most of them are structural components subject to both quasi-static,dynamic and cyclic loading,the quality and quantifiable performance of the ultra-large aluminum shape castings is critical to their success in both design and manufacturing.This paper briefly reviews some application examples of ultra-large aluminum castings in automotive industry and outlines their advantages and benefits.Factors affecting quality,microstructure and mechanical properties of ultra-large aluminum castings are evaluated and discussed as aluminum shape casting processing is very complex and often involves many competing mechanisms,multi-physics phenomena,and potentially large uncertainties that significantly influence the casting quality and performance.Metallurgical analysis and mechanical property assessment of an ultra-large aluminum shape casting are presented.Challenges are highlighted and suggestions are made for robust design and manufacturing of ultra-large aluminum castings. 展开更多
关键词 ultra-large castings ALUMINUM light-weighting quality microstructure materials properties
下载PDF
Role of alloying and heat treatment on microstructure and mechanical properties of cast Al-Li alloys:A review
11
作者 Guo-hua Wu You-jie Guo +4 位作者 Fang-zhou Qi Shen Zhang Yi-xiao Wang Xin Tong Liang Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期445-460,共16页
Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and ... Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and are ideal structural materials for aerospace,defense and military industries.On the basis of the microstructural characteristics of cast Al-Li alloys,exploring the role of alloying and micro-alloying can stabilize their dominant position and further expand their application scope.In this review,the development progress of cast Al-Li alloys was summarized comprehensively.According to the latest research highlights,the influence of alloying and heat treatment on the microstructure and mechanical properties was systematically analyzed.The potential methods to improve the alloy performance were concluded.In response to the practical engineering requirements of cast Al-Li alloys,the scientific challenges and future research directions were discussed and prospected. 展开更多
关键词 cast Al-Li alloy ALLOYING microstructure mechanical properties heat treatment
下载PDF
Microstructure and Hot Tearing Sensitivity Simulation and Parameters Optimization for the Centrifugal Casting of Al-Cu Alloy
12
作者 Xueli He Shengkun Lv +4 位作者 Ruifeng Dou Yanying Zhang Junsheng Wang Xunliang Liu Zhi Wen 《Computers, Materials & Continua》 SCIE EI 2024年第8期2873-2895,共23页
Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for pr... Four typical theories on the formation of thermal tears:strength,liquid film,intergranular bridging,and solidifica-tion shrinkage compensation theories.From these theories,a number of criteria have been derived for predicting the formation of thermal cracks,such as the stress-based Niyama,Clyne,and RDG(Rapaz-Dreiser-Grimaud)criteria.In this paper,a mathematical model of horizontal centrifugal casting was established,and numerical simulation analysis was conducted for the centrifugal casting process of cylindrical Al-Cu alloy castings to investigate the effect of the centrifugal casting process conditions on the microstructure and hot tearing sensitivity of alloy castings by using the modified RDG hot tearing criterion.Results show that increasing the centrifugal rotation and pouring speeds can refine the microstructure of the alloy but increasing the pouring and mold preheating temperatures can lead to an increase in grain size.The grain size gradually transitions from fine grain on the outer layer to coarse grain on the inner layer.Meanwhile,combined with the modified RDG hot tearing criterion,the overall distribution of the castings’hot tearing sensitivity was analyzed.The analysis results indicate that the porosity in the middle region of the casting was large,and hot tearing defects were prone to occur.The hot tearing tendency on the inner side of the casting was greater than that on the outer side.The effects of centrifugal rotation speed,pouring temperature,and preheating temperature on the thermal sensitivity of Al-Cu alloy castings are summarized in this paper.This study revealed that the tendency of alloy hot cracking decreases with the increase of the centrifugal speed,and the maximum porosity of castings decreases first and then increases with the pouring temperature.As the preheating temperature increases,the overall maximum porosity of castings shows a decreasing trend. 展开更多
关键词 Centrifugal casting Al-Cu alloy MICROSTRUCTURE hot tearing SIMULATION
下载PDF
Numerical simulation of melt flow and temperature field during DC casting 2024 aluminium alloy under different casting conditions
13
作者 Jin-chuan Wang Yu-bo Zuo +3 位作者 Qing-feng Zhu Jing Li Rui Wang Xu-dong Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第4期387-396,共10页
Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ... Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone. 展开更多
关键词 aluminium DC casting flow field temperature field numerical simulation
下载PDF
Experimental observations on the nonproportional multiaxial ratchetting of cast AZ91 magnesium alloy at room temperature
14
作者 Binghui Hu Yu Lei +3 位作者 Hang Li Ziyi Wang Chao Yu Guozheng Kang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1115-1125,共11页
The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (R... The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (RT).The evolutionary characteristics and path dependence of multiaxial ratchetting were discussed.Results illustrate that the cast AZ91 Mg alloy exhibits considerable nonproportional additional softening during cyclic loading with multiple nonproportional multiaxial loading paths;multiaxial ratchetting presents strong path dependence,and axial ratchetting strains are larger under nonproportional loading paths than under uniaxial and proportional45°linear loading paths;multiaxial ratchetting becomes increasingly pronounced as the applied stress amplitude and axial mean stress increase.Moreover,stress-strain curves show a convex and symmetrical shape in axial/torsional directions.Multiaxial ratchetting exhibits quasi-shakedown after certain loading cycles.The abundant experimental data obtained in this work can be used to develop a cyclic plasticity model of cast Mg alloys. 展开更多
关键词 cast magnesium alloy RATCHETTING multiaxial loading loading path stress level
下载PDF
Thin-walled and large-sized magnesium alloy die castings for passenger car cockpit:Application,materials,and manufacture
15
作者 Lei Zhan Yu-meng Sun +6 位作者 Yang Song Chun-hua Kong Kai Ma Bai-xin Dong Hong-yu Yang Shi-li Shu Feng Qiu 《China Foundry》 SCIE EI CAS CSCD 2024年第5期525-545,共21页
In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automo... In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automobiles.Previously,the application of Mg alloys in automobiles,especially in automotive cockpit components,is quite extensive,while it has almost disappeared for a period of time due to its relatively high cost,causing a certain degree of information loss in the application technology of Mg alloy parts in automobiles.The rapid development of automotive technology has led to a higher requirement for the automotive components compared with those traditional one.Therefore,whatever the components themselves,or the Mg alloy materials and die casting process have to face an increasing challenge,needing to be upgraded.In addition,owing to its high integration characteristics,the application of Mg alloy die casting technology in large-sized and thin-walled automotive parts has inherent advantages and needs to be expanded urgently.Indeed,it necessitates exploring advance Mg alloys and new product structures and optimizing die casting processes.This article summarizes and analyzes the development status of thin-walled and large-sized die casting Mg alloy parts in passenger car cockpit and corresponding material selection methods,die casting processes as well as mold design techniques.Furthermore,this work will aid researchers in establishing a comprehensive understanding of the manufacture of thin-walled and large-sized die casting Mg alloy parts in automobile cockpit.It will also assist them in developing new Mg alloys with improved comprehensive performance and new processes to meet the high requirements for die casting automotive components. 展开更多
关键词 Mg alloys thin wall large size automotive part die casting
下载PDF
To improve robustness of mechanical properties of semi-solid cast A356 alloy using taguchi design method
16
作者 Yi-wu Xu Hong-yi Zhan +4 位作者 Wei Tong Jin-ping Li Le-peng Zhang De-jiang Li Xiao-qin Zeng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期175-184,共10页
Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated... Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated the impact of parameters in slurry preparation and heat treatment on the yield strength and ductility of T6 heat-treated A356 Al-Si alloy using rapid slurry forming(RSF)semi-solid casting.The focus was primarily on the robustness of mechanical properties based on Taguchi design method.By analyzing signal-to-noise ratio and minimum value calculated from-3S,the optimum slurry preparation parameters and heat treatment parameters were determined to be no quench,enthalpy exchange material(EEM)temperature of 140℃,EEM-to-melt ratio of 6mass%,stirring time of 18 s,solution heat treated at 520℃ for 2 h,and ageing heat treated at 190℃ for 6 h.In a small batch validation,the-3S yield strength and-3S elongation reach 256.1 MPa and 5.03% respectively,showing a satisfactory robustness.The hardness and microstructure of heat-treated samples with the best and worst properties were characterized to gain insight into the underlying mechanisms affecting the mean value and variations of mechanical properties. 展开更多
关键词 semi-solid casting taguchi design method signal-to-noise ratio mechanical property MICROSTRUCTURE
下载PDF
Research progress on semi-continuous casting of magnesium alloys under external field
17
作者 Qi-yu Liao Qi-chi Le +3 位作者 Da-zhi Zhao Lei Bao Tong Wang Yong-hui Jia 《China Foundry》 SCIE EI CAS CSCD 2024年第5期516-524,共9页
High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium... High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium alloys produced through the conventional semi-continuous casting process inevitably contain casting defects,which makes it challenging to manufacture high-quality ingots.The integration of external field assisted controlled solidification technology,which combines physical fields such as electromagnetic and ultrasonic fields with traditional semi-continuous casting processes,enables the production of high-quality magnesium alloy ingots characterized by a homogeneous microstructure and absence of cracks.This article mainly summarizes the technical principles of those external field assisted casting process.The focus is on elaborating the refinement mechanism of different types of electromagnetic fields,ultrasonic fields,and combined physical fields during the solidification of magnesium alloys.Finally,the development prospects of producing highquality magnesium alloy ingots through semi-continuous casting under the external field were discussed. 展开更多
关键词 semi-continuous casting electromagnetic field ultrasonic field magnesium alloys refinement mechanism
下载PDF
A simple route for preparation of TRIP-assisted Si-Mn steel with excellent performance using direct strip casting
18
作者 Hui Xu Lejun Zhou +1 位作者 Wanlin Wang Yang Yi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2173-2181,共9页
The complex producing procedures and high energy-consuming limit the large-scale production and application of advanced high-strength steels(AHSSs).In this study,the direct strip casting(DSC)technology with unique sub... The complex producing procedures and high energy-consuming limit the large-scale production and application of advanced high-strength steels(AHSSs).In this study,the direct strip casting(DSC)technology with unique sub-rapid solidification characteristics and cost advantages was applied to the production of low-alloy Si-Mn steel with the help of quenching&partitioning(Q&P)concept to address these issues.Compared this method with the conventional compact strip production(CSP)process,the initial microstructure formed under different solidification conditions and the influence of heat treatment processes on the final mechanical properties were in-vestigated.The results show that the initial structure of the DSC sample is a dual-phase structure composed of fine lath martensite and bainite,while the initial structure of the CSP sample consists of pearlite and ferrite.The volume fraction and carbon content of retained austenite(RA)in DSC samples are usually higher than those in CSP samples after the same Q&P treatment.DSC samples typically demonstrate better comprehensive mechanical properties than the CSP sample.The DSC sample partitioned at 300℃ for 300 s(DSC-Pt300)achieves the best comprehensive mechanical properties,with yield strength(YS)of 1282 MPa,ultimate tensile strength(UTS)of 1501 MPa,total elongation(TE)of 21.5%,and product of strength and elongation(PSE)as high as 32.3 GPa·%.These results indicate that the excellent mechanical properties in low-alloy Si-Mn steel can be obtained through a simple process(DSC-Q&P),which also demonstrates the superiority of DSC technology in manufacturing AHSSs. 展开更多
关键词 direct strip casting sub-rapid solidification quenching and partitioning TRIP-assisted AHSSs microstructure
下载PDF
Numerical simulation study on the mold strength of magnetic mold casting based on a coupled electromagnetic-structural method
19
作者 Wei-li Peng Jian-hua Zhao +1 位作者 Cheng Gu Ya-jun Wang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期577-587,共11页
The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled ... The properties of the magnetic mold in magnetic mold casting directly determine the quality of the final cast parts.In this study,the magnetic mold properties in magnetic mold casting,were studied utilizing a coupled electromagnetic-structural method through numerical simulation.This study investigated key factors including equivalent stress,the distribution of tensile and compressive stresses,and the area ratio of tensile stress.It compared molds made entirely of magnetic materials with those made partially of magnetic materials.Simulation results indicate that as current increases from 4 A to 8 A,both the initial magnetic mold and the material-replaced magnetic mold initially show an increasing trend in equivalent stress,tensile-compressive stress,and the area ratio of tensile stress,peaking at 6 A before declining.After material replacement,the area ratio of tensile stress at 6 A decreases to 19.84%,representing a reduction of 29.72%.Magnetic molds comprising a combination of magnetic and non-magnetic materials exhibit sufficient strength and a reduced area ratio of tensile stress compared to those made entirely from magnetic materials.This study provides valuable insights for optimizing magnetic mold casting processes and offers practical guidance for advancing the application of magnetic molds. 展开更多
关键词 magnetic mold casting coupled electromagnetic-structural method numerical simulation stress analysis
下载PDF
Irregular initial solidification by mold thermal monitoring in the continuous casting of steels:A review
20
作者 Qiuping Li Guanghua Wen +3 位作者 Fuhang Chen Ping Tang Zibing Hou Xinyun Mo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1003-1015,共13页
Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the ... Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed. 展开更多
关键词 irregular initial solidification mold thermal monitoring continuous casting mold slag THERMOCOUPLE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部