A novel cast shadow detection approach was proposed.A stereo vision system was used to capture images instead of traditional single camera.It was based on an assumption that cast shadows were on a special plane.The im...A novel cast shadow detection approach was proposed.A stereo vision system was used to capture images instead of traditional single camera.It was based on an assumption that cast shadows were on a special plane.The image obtained from one camera was inversely projected to the plane and then transformed to the view from another camera.The points on the plane shared the same position between original image and the transformed image.As a result,the cast shadows can be detected.In order to improve the efficiency of cast shadow detection and decrease computational complexity,the obvious object areas in CIELAB color space were removed and the potential shadow areas were obtained.Experimental results demonstrate that the proposed approach can detect cast shadows accurately even under various illuminations.展开更多
The effect of terrain shadow, including the self and cast shadows, is one ofthe main obstacles for accurate retrieval of vegetation parameters byremote sensing in rugged terrains. A shadow- eliminated vegetation index...The effect of terrain shadow, including the self and cast shadows, is one ofthe main obstacles for accurate retrieval of vegetation parameters byremote sensing in rugged terrains. A shadow- eliminated vegetation index(SEVI) was developed, which was computed from only red and nearinfrared top-of-atmosphere reflectance without other heterogeneous dataand topographic correction. After introduction of the conceptual modeland feature analysis of conventional wavebands, the SEVI was constructedby ratio vegetation index (RVI), shadow vegetation index (SVI) andadjustment factor (f (Δ)). Then three methods were used to validate theSEVI accuracy in elimination of terrain shadow effects, including relativeerror analysis, correlation analysis between the cosine of solar incidenceangle (cosi) and vegetation indices, and comparison analysis between SEVIand conventional vegetation indices with topographic correction. Thevalidation results based on 532 samples showed that the SEVI relativeerrors for self and cast shadows were 4.32% and 1.51% respectively. Thecoefficient of determination between cosi and SEVI was only 0.032 and thecoefficient of variation (std/mean) for SEVI was 12.59%. The results indicatethat the proposed SEVI effectively eliminated the effect of terrain shadowsand achieved similar or better results than conventional vegetation indiceswith topographic correction.展开更多
基金Project(40971219)supported by the Natural Science Foundation of ChinaProjects(201121202020005,T201221207)supported by the Fundamental Research Fund for the Central Universities,China
文摘A novel cast shadow detection approach was proposed.A stereo vision system was used to capture images instead of traditional single camera.It was based on an assumption that cast shadows were on a special plane.The image obtained from one camera was inversely projected to the plane and then transformed to the view from another camera.The points on the plane shared the same position between original image and the transformed image.As a result,the cast shadows can be detected.In order to improve the efficiency of cast shadow detection and decrease computational complexity,the obvious object areas in CIELAB color space were removed and the potential shadow areas were obtained.Experimental results demonstrate that the proposed approach can detect cast shadows accurately even under various illuminations.
基金China National Key Research and Development Plan[grant number 2017YFB0504203]China Scholarship Fund[grant number 201706655028]Natural Science Foundation of Fujian Province[grant number 2017J01658].
文摘The effect of terrain shadow, including the self and cast shadows, is one ofthe main obstacles for accurate retrieval of vegetation parameters byremote sensing in rugged terrains. A shadow- eliminated vegetation index(SEVI) was developed, which was computed from only red and nearinfrared top-of-atmosphere reflectance without other heterogeneous dataand topographic correction. After introduction of the conceptual modeland feature analysis of conventional wavebands, the SEVI was constructedby ratio vegetation index (RVI), shadow vegetation index (SVI) andadjustment factor (f (Δ)). Then three methods were used to validate theSEVI accuracy in elimination of terrain shadow effects, including relativeerror analysis, correlation analysis between the cosine of solar incidenceangle (cosi) and vegetation indices, and comparison analysis between SEVIand conventional vegetation indices with topographic correction. Thevalidation results based on 532 samples showed that the SEVI relativeerrors for self and cast shadows were 4.32% and 1.51% respectively. Thecoefficient of determination between cosi and SEVI was only 0.032 and thecoefficient of variation (std/mean) for SEVI was 12.59%. The results indicatethat the proposed SEVI effectively eliminated the effect of terrain shadowsand achieved similar or better results than conventional vegetation indiceswith topographic correction.