期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Thermal performance of cast-in-place piles with artificial ground freezing in permafrost regions
1
作者 WANG Xinbin CHEN Kun +3 位作者 YU Qihao GUO Lei YOU Yanhui JIN Mingyang 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1307-1328,共22页
During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing cap... During the construction of cast-in-place piles in warm permafrost,the heat carried by concrete and the cement hydration reaction can cause strong thermal disturbance to the surrounding permafrost.Since the bearing capacity of the pile is quite small before the full freeze-back,the quick refreezing of the native soils surrounding the cast-in-place pile has become the focus of the infrastructure construction in permafrost.To solve this problem,this paper innovatively puts forward the application of the artificial ground freezing(AGF)method at the end of the curing period of cast-in-place piles in permafrost.A field test on the AGF was conducted at the Beiluhe Observation and Research Station of Frozen Soil Engineering and Environment(34°51.2'N,92°56.4'E)in the Qinghai Tibet Plateau(QTP),and then a 3-D numerical model was established to investigate the thermal performance of piles using AGF under different engineering conditions.Additionally,the long-term thermal performance of piles after the completion of AGF under different conditions was estimated.Field experiment results demonstrate that AGF is an effective method to reduce the refreezing time of the soil surrounding the piles constructed in permafrost terrain,with the ability to reduce the pile-soil interface temperatures to below the natural ground temperature within 3 days.Numerical results further prove that AGF still has a good cooling effect even under unfavorable engineering conditions such as high pouring temperature,large pile diameter,and large pile length.Consequently,the application of this method is meaningful to save the subsequent latency time and solve the problem of thermal disturbance in pile construction in permafrost.The research results are highly relevant for the spread of AGF technology and the rapid building of pile foundations in permafrost. 展开更多
关键词 Permafrost engineering cast-in-place pile Artificial ground freezing Thermal performance.
下载PDF
Life-Cycle Bearing Capacity for Pre-Stressed T-beams Based on Full-Scale Destructive Test
2
作者 Yushan Ye Tao Gao +4 位作者 Liankun Wang Junjie Ma Yingchun Cai Heng Liu Xiaoge Liu 《Structural Durability & Health Monitoring》 EI 2025年第1期145-166,共22页
To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret... To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity. 展开更多
关键词 Pre-stressed t-beams whole process destructive test bearing capacity verification coefficient
下载PDF
Refreezing of cast-in-place piles under various engineering conditions 被引量:9
3
作者 Lei Guo QiHao Yu +2 位作者 XiaoNing Li XinBin Wang YongYu Yue 《Research in Cold and Arid Regions》 CSCD 2015年第4期376-383,共8页
In the construction of the Qinghai-Tibet Power Transmission Line (QTPTL), cast-in-place piles (CIPPs) are widely applied in areas with unfavorable geological conditions. The thermal regime around piles in permafro... In the construction of the Qinghai-Tibet Power Transmission Line (QTPTL), cast-in-place piles (CIPPs) are widely applied in areas with unfavorable geological conditions. The thermal regime around piles in permafrost regions greatly affects the stability of the towers as well as the operation of the QTPTL. The casting of piles will markedly affect the thermal regime of the surrounding permafrost because of the casting temperature and the hydration heat of cement. Based on the typical geological and engineering conditions along the QTPTL, thermal disturbance ofa CIPP to surrounding permafrost under different casting seasons, pile depths, and casting temperatures were simulated. The results show that the casting season (summer versus winter) can influence the refreezing process of CIPPs, within the first 6 m of pile depth. Sixty days after being cast, CIPPs greater than 6 m in depth can be frozen regardless of which season they were cast, and the foundation could be reffozen after a cold season. Comparing the refreezing characteristics of CIPPs cast in different seasons also showed that, without considering the ground surface conditions, warm seasons are more suitable for casting piles. With the increase of pile depth, the thermal effect of a CIPP on the surrounding soil mainly expands vertically, while the lateral heat disturbance changes little. Deeper, longer CIPPs have better stability. The casting temperature clearly affects the thermal disturbance, and the radius of the melting circle increases with rising casting temperature. The optimal casting temperature is between 2 ℃ and 9 ℃. 展开更多
关键词 cast-in-place pile hydration heat REFREEZING engineering factor PERMAFROST
下载PDF
Seismic performance analysis and design suggestion for frame buildings with cast-in-place staircases 被引量:2
4
作者 Feng Yuan Wu Xiaobin +2 位作者 Xiong Yaoqing Li Congchun Yang Wen 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第2期209-219,共11页
Many staircases in reinforced concrete (RC) frame structures suffered severe damage during the Wenchuan earthquake. Elastic analyses for 18 RC structure models with and without staircases are conducted and compared ... Many staircases in reinforced concrete (RC) frame structures suffered severe damage during the Wenchuan earthquake. Elastic analyses for 18 RC structure models with and without staircases are conducted and compared to study the influence of the staircase on the stiffness, displacements and internal forces of the structures. To capture the yielding development and damage mechanism of frame structures, elasto-plastic analysis is carried out for one of the 18 models. Based on the features observed in the analyses, a new type of staircase design i.e., isolating them from the master structure to eliminate the effect of K-type struts, is proposed and discussed. It is concluded that the proposed method of staircase isolation is effective and feasible for engineering design, and does not significantly increase the construction cost. 展开更多
关键词 cast-in-place staircases frame structure seismic performance design suggestions
下载PDF
Physical modeling of behaviors of cast-in-place concrete piled raft compared to free-standing pile group in sand 被引量:1
5
作者 Mehdi Sharafkhah Issa Shooshpasha 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第4期703-716,共14页
Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies i... Similar to free-standing pile groups, piled raft foundations are conventionally designed in which the piles carry the total load of structure and the raft bearing capacity is not taken into account. Numerous studies indicated that this method is too conservative. Only when the pile cap is elevated from the ground level,the raft bearing contribution can be neglected. In a piled raft foundation, pileesoileraft interaction is complicated. Although several numerical studies have been carried out to analyze the behaviors of piled raft foundations, very few experimental studies are reported in the literature. The available laboratory studies mainly focused on steel piles. The present study aims to compare the behaviors of piled raft foundations with free-standing pile groups in sand, using laboratory physical models. Cast-in-place concrete piles and concrete raft are used for the tests. The tests are conducted on single pile, single pile in pile group, unpiled raft, free-standing pile group and piled raft foundation. We examine the effects of the number of piles, the pile installation method and the interaction between different components of foundation. The results indicate that the ultimate bearing capacity of the piled raft foundation is considerably higher than that of the free-standing pile group with the same number of piles. With installation of the single pile in the group, the pile bearing capacity and stiffness increase. Installation of the piles beneath the raft decreases the bearing capacity of the raft. When the raft bearing capacity is not included in the design process, the allowable bearing capacity of the piled raft is underestimated by more than 200%. This deviation intensifies with increasing spacing of the piles. 展开更多
关键词 Free-standing pile group Piled raft Pileesoileraft interaction Physical modeling cast-in-place concrete piles
下载PDF
Field observation of the thermal disturbance and freezeback processes of cast-in-place pile foundations in warm permafrost regions 被引量:1
6
作者 Xin Hou Ji Chen +4 位作者 YouQian Liu PengFei Rui JingYi Zhao ShouHong Zhang HaiMing Dang 《Research in Cold and Arid Regions》 CSCD 2023年第1期18-26,共9页
The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the therm... The bearing capacity of pile foundations is affected by the temperature of the frozen soil around pile foundations.The construction process and the hydration heat of cast-in-place(CIP)pile foundations affect the thermal stability of permafrost.In this paper,temperature data from inside multiple CIP piles,borehole observations of ground thermal status adjacent to the foundations and local weather stations were monitored in warm permafrost regions to study the thermal influence process of CIP pile foundations.The following conclusions are drawn from the field observation data.(1)The early temperature change process of different CIP piles is different,and the differences gradually diminish over time.(2)The initial concrete temperature is linearly related with the air temperature,net radiation and wind speed within 1 h before the completion of concrete pouring;the contributions of the air temperature,net radiation,and wind speed to the initial concrete temperature are 51.9%,20.3%and 27.9%,respectively.(3)The outer boundary of the thermal disturbance annulus is approximately 2 m away from the pile center.It took more than 224 days for the soil around the CIP piles to return to the natural permafrost temperature at the study site. 展开更多
关键词 PERMAFROST cast-in-place pile foundations Thermal disturbance Freezeback process Initial concrete temperature
下载PDF
Field study of plastic tube cast-in-place concrete pile
7
作者 陈永辉 曹德洪 +2 位作者 王新泉 杜海伟 张霆 《Journal of Central South University》 SCIE EI CAS 2008年第S2期195-202,共8页
The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on sin... The compositions, technical principles and construction equipments of a new piling method used for ground improvement plastic tube cast-in-place concrete pile were introduced. The results from static load tests on single piles with different forms of pile shoes and on their composite foundations were analyzed. The distribution patterns of axial force, shaft friction and toe resistance were studied based on the measurements taken from buried strain gauges. From the point of engineering application, the pile has merits in convenient quality control, high bearing capacity and reliable quality, showing higher reasonability, advancement and suitability than other ground improvement methods. The pile can be adopted properly to take place of ordinary ground improvement method, achieving greater economical and social benefits. 展开更多
关键词 PLASTIC tube cast-in-place concrete PILE SOFT ground improvement pile-supported type reinforced EMBANKMENT CONSTRUCTION equipment CONSTRUCTION workmanship
下载PDF
Design and construction of high and large span cast-in-place reinforced concrete cantilever flowering frame beam
8
作者 WANG Rui ZHEN Liang +2 位作者 WAN Chao WU Jing SHEN Yan-jun 《Journal of Civil Engineering and Architecture》 2009年第5期58-62,共5页
The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guarante... The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guaranteed the frame body and structure security by the frame body calculating, on-site test and reasonable construction order. 展开更多
关键词 cast-in-place reinforced concrete support of cantilever structure high and long span design and construction
下载PDF
Stiffness Degradation Characteristics Destructive Testing and Finite-Element Analysis of Prestressed Concrete T-Beam
9
作者 Chengquan Wang Yonggang Shen +2 位作者 Yun Zou Tianqi Li Xiaoping Feng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第1期75-93,共19页
The failure behavior of the precast prestressed concrete T girder was investigated by destructive test and finite-element analysis,and the mid-span deflection,girder stiffness and the variation of the cross section st... The failure behavior of the precast prestressed concrete T girder was investigated by destructive test and finite-element analysis,and the mid-span deflection,girder stiffness and the variation of the cross section strain in the loading process were obtained,and the mechanical properties,mechanical behavior,elastic and plastic behavior and ultimate bearing capacity of T girder with large span were revealed.Furthermore,the relationship between the beam stiffness degradation,the neutral axis in cross-section,steel yielding and concrete cracking are investigated and analyzed.A method was proposed to predict the residual bearing capacity of a bridge based on the variation of the position of the cross section strain distribution and the section neutral axis,which provided a theoretical basis for predicting the stiffness detection and carrying capacity assessment of prestressed concrete beam. 展开更多
关键词 PRESTRESSED concrete t-beam destructive testing FINITE-ELEMENT STIFFNESS plane-section ASSUMPTION
下载PDF
Strengthening of RC T-beams with Shear Deficiencies Using GFRP Strips
10
作者 Kishor Chandra Panda Sriman Kumar Bhattacharyya Sudhirkumar V. Barai 《Journal of Civil Engineering and Architecture》 2011年第1期56-67,共12页
The shear performance, modes of failure, and strain analysis of simply supported reinforced concrete (RC) T-beams, externally strengthened in shear using epoxy bonded glass fiber reinforced polymer (GFRP) strips a... The shear performance, modes of failure, and strain analysis of simply supported reinforced concrete (RC) T-beams, externally strengthened in shear using epoxy bonded glass fiber reinforced polymer (GFRP) strips are focused in the present paper. Six RC T-beams of 2.5 m span without shear reinforcement are cast. Three beams are used as control specimens and rest three beams are strengthened in shear with GFRP strips in U-shape, side bonded at 45° and 90° to the longitudinal axis of the beam. All the beams are tested in a Universal Testing Machine. The test results demonstrate the feasibility of using an externally applied, epoxy-bonded GFRP strips to restore or increase the shear strength of RC T-beams. It is also observed that the RC T-beams strengthened by diagonal side strips outperformed those strengthened with vertical side strips. 展开更多
关键词 Reinforced concrete (RC) glass fiber-reinforced polymer (GFRP) shear strength t-beams.
下载PDF
Influence of the penetration of adjacent X-section cast-in-place concrete(XCC)pile on the existing XCC pile in sand
11
作者 Peng ZHOU Jianhui XU +3 位作者 Changjie XU Guangwei CAO Jie CUP Xuanming DING 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第7期557-572,共16页
A series of small-scale 1g X-section cast-in-place concrete(XCC)pile-penetration model tests were conducted to study the effects of soil density and pile geometry on the lateral responses of an existing pile and the v... A series of small-scale 1g X-section cast-in-place concrete(XCC)pile-penetration model tests were conducted to study the effects of soil density and pile geometry on the lateral responses of an existing pile and the variations in surrounding soil stress.The results showed that the bending patterns of existing XCC piles varied with penetration depth.The lateral response of the existing pile was sensitive to the change in relative density and pile geometry.For example,the bending moment of the existing pile increased along with these parameters.The development of the radial stressσ′r/σ′v0 of the soil around an existing pile showed different trends at various depths during the penetration of the adjacent pile.Moreover,the change in radial stress during the penetration of the XCC pile did not exhibit the“h/R effect”that was observed in the free-field soil,due to the shielding effect of the existing piles.The peak value of radial stressσ′r_max/σ′v0 decreased exponentially as the radial distance r/R increased.The attenuation ofσ′r_max/σ′v0 with r/R in the loose sand was faster than in the medium-dense or dense sands.Theσ′r_max/σ′v0 at the same soil location increased with the cross-section geometry parameter. 展开更多
关键词 X-section cast-in-place concrete(XCC)pile Test PENETRATION SAND Lateral response Radial stress
原文传递
Seismic performance of precast bridge columns connected with grouted corrugated-metal duct through biaxial quasi-static experiment and modeling 被引量:5
12
作者 Xia Zhanghua Lin Shangshun +2 位作者 He Yongbo Ge Jiping Sun Jinlei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第3期747-770,共24页
In this paper,the seismic behaviors of precast bridge columns connected with grouted corrugated-metal duct(GCMD)were investigated through the biaxial quasi-static experiment and numerical simulation.With a geometric s... In this paper,the seismic behaviors of precast bridge columns connected with grouted corrugated-metal duct(GCMD)were investigated through the biaxial quasi-static experiment and numerical simulation.With a geometric scale ratio of 1:5,five specimens were fabricated,including four precast bridge columns connected with GCMD and one cast-in-place(CIP)bridge column.A finite element analysis model was also established by using OpenSees and was then calibrated by using the experimental results for parameter analysis.The results show the biaxial seismic performance of the precast bridge columns connected with GCMD was similar to the CIP bridge columns regarding ultimate bearing capacity and hysteresis energy,and further,that it could meet the design goal of equivalent performance.The seismic performance of the precast bridge columns connected with GCMD deteriorated more significantly under bi-directional load than under uni-directional load.A proper slenderness ratio(e.g.,7.0-10.0)and longitudinal reinforcement ratio could significantly improve the energy dissipation capacity and deformation capacity of the precast bridge columns,while the axial load ratio and concrete strength had little influence on the above properties.The research results could bring insights to the development of the seismic design of precast bridge columns connected with GCMD. 展开更多
关键词 precast bridge column cast-in-place column grouted corrugated-metal duct connection biaxial quasi-static test seismic performance hysteresis energy
下载PDF
Exothermic process of cast-in-place pile foundation and its thermal agitation of the frozen ground under a long dry bridge on the Qinghai-Tibet Railway 被引量:5
13
作者 Ya-ping WU Jian GUO +2 位作者 Chun-xiang GUO Wei MA Xiao-jun WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2010年第2期88-96,共9页
A number of dry bridges have been built to substitute for the roadbed on the Qinghai-Tibet Railway,China.The aim of this study was to investigate the exothermic process of cast-in-place (CIP) pile foundation of a dry ... A number of dry bridges have been built to substitute for the roadbed on the Qinghai-Tibet Railway,China.The aim of this study was to investigate the exothermic process of cast-in-place (CIP) pile foundation of a dry bridge and its harm to the stability of nearby frozen ground.We present 3D heat conduction functions of a concrete pile and of frozen ground with related boundaries.Our analysis is based on the theory of heat conduction and the exponent law describing the adiabatic temperature rise caused by hydration heat.Results under continuous and initial conditions were combined to establish a finite element model of a CIP pile-frozen ground system for a dry bridge under actual field conditions in cold regions.Numerical results indicated that the process could effectively simulate the exothermic process of CIP pile foundation.Thermal disturbance to frozen ground under a long dry bridge caused by the casting temperature and hydration heat of CIP piles was substantial and long-lasting.The simulated thermal analysis results agreed with field measurements and some significant rules relating to the problem were deduced and conclusions reached. 展开更多
关键词 Exothermic process of hydration heat cast-in-place (CIP) pile foundation Dry bridge Thermal agitation Frozen ground Qinghai-Tibet Railway
原文传递
青藏铁路多年冻土区钻孔桩基础个别问题探讨及设计对策(英文) 被引量:1
14
作者 高翰青 《冰川冻土》 CSCD 北大核心 2004年第S1期194-196,共3页
Part of soil around cast-in-place pile will thaw because the heat of hydration produced by concrete during construction. In this paper soil upfreezing action to pile during refreezing process is analyzed, and the meas... Part of soil around cast-in-place pile will thaw because the heat of hydration produced by concrete during construction. In this paper soil upfreezing action to pile during refreezing process is analyzed, and the measures to the action are put forward. Furthermore, soil frictional forces to pile due to the thawing of part of soil around pile and the slowness of refreezing after construction is discussed and a rational method is suggested. 展开更多
关键词 cast-in-place PILE REFREEZING of soil upfreezing action DRILL frictional PILE
下载PDF
Complex variable solution for boundary value problem with X-shaped cavity in plane elasticity and its application* 被引量:3
15
作者 Hang ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第9期1329-1346,共18页
A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance a... A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering. 展开更多
关键词 complex variable solution boundary value problem plane elasticity X-section cast-in-place concrete (XCC) pile deformation mechanism theoretical study
下载PDF
Structural Condition and Deficiencies of Present Constructed Bridges over Zahirshahi Canal and Proposal of New Design Using AASHTO Codes
16
作者 Abdul Khaliq Karimi Abdul Bari Jaheed +1 位作者 Bashir Ahmad Aasim Javed Ahmad Farooqi 《World Journal of Engineering and Technology》 2019年第2期325-332,共8页
This paper addresses a comprehensive design of RCC T-beam Bridge based on AASHTO design standards. The bridge is designed and proposed to be constructed over an irrigation canal (Zahirshahi canal) of Kandahar province... This paper addresses a comprehensive design of RCC T-beam Bridge based on AASHTO design standards. The bridge is designed and proposed to be constructed over an irrigation canal (Zahirshahi canal) of Kandahar province, Afghanistan that has more than 30 bridges over it. Yet they are not enough, and the demand for construction of new bridges is gradually arising because of the vast urbanization in the surrounding of the canal. Most of the bridges on this canal are Reinforced Concrete Slab (RCS) bridges;?these type bridges are limited by capacity and are generally found only in smaller spans. Since they can only span short distances and are often constructed as multiple-span?bridges with vertical supports between the abutments to allow a longer length.?All constructed slab bridges over Zahirshahi canal are four-span bridges. Constructing multi-span bridges on the canal decreases waterway due to the existence of many piers and footings that could increase the water level during the peak flow, even, sometimes can cause over flow. Taking into consideration these deficiencies of the present (RCS) bridges, two-span RCC T-beam Bridge is one of the best alternatives to be constructed over the canal. In addition, canal cross-sectional dimensions are almost constant along its length, though the construction of two-span RCC T-beam bridge is applicable at any point of the canal. The design is selected based on exclusive survey of the area during all seasons including the peak flowing of the canal. 展开更多
关键词 Zahirshahi CANAL RCC t-beam Bridge AASHTO Design Standards
下载PDF
Effectiveness of external prestressing in enhancing the non-ductile hanger failure mechanism in reinforced concrete inverted T-beams
17
作者 Ahmed M.ATTA Reda N.BEHIRY Mohammed I.HARAZ 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第7期1050-1065,共16页
Recently,inverted T-beams have been used in reinforced concrete(RC)bridges to support transverse precast stringers.Inverted T-beams,contrary to practice with conventional beams,are loaded on the flanges upper surface.... Recently,inverted T-beams have been used in reinforced concrete(RC)bridges to support transverse precast stringers.Inverted T-beams,contrary to practice with conventional beams,are loaded on the flanges upper surface.This loading configuration causes hanger failure due to the generation of vertical tensile stresses near the bottom of the web.The key purpose of this study is to investigate the efficiency of vertical external prestressing stainless-steel bars in mitigating non-ductile hanger failure in reinforced concrete inverted T-beams.An experimental study on six inverted-T beams,including two un-strengthened specimens,was carried out.The study showed that the value of the prestressing level had a considerable impact on the performance of hanger mechanism in relation to crack pattern,ultimate loads,cracking behavior,load-deflection,strains,and ductility.The experimental results indicated that the suggested method for strengthening inverted T-beams had efficacy in reducing the seriousness of the non-ductile hanger failure and resulted in a strength increase of up to 53% when compared to that of the un-strengthened specimen.Additionally,two analytical models for estimating the hanger capacity and the average crack width of the strengthened RC inverted T-beams were proposed.The models that were proposed exhibited a high degree of agreement with the experimental results. 展开更多
关键词 RC bridges inverted t-beams strengthening hanger failure external prestressing
原文传递
Ultimate load analysis of pretensioned inverted T-beams with circular web openings
18
作者 Hock Tian CHENG Bashar SMOHAMMED Kamal Nasharuddin MUSTAPHA 《Frontiers of Structural and Civil Engineering》 SCIE EI 2009年第3期262-271,共10页
The provision of transverse openings in floor beams to facilitate the passage of utility pipes and service ducts not only results in a more systematic layout of pipes and ducts,it also translates into substantial econ... The provision of transverse openings in floor beams to facilitate the passage of utility pipes and service ducts not only results in a more systematic layout of pipes and ducts,it also translates into substantial economic savings in the construction of a multi-storey building.In this paper,ultimate load analysis of statically loaded simply supported pretensioned inverted T-beams with circular web openings is presented.Major findings relevant to ultimate load analysis of pretensioned beams with circular web openings are summarized.An attempt has been made to answer the frequently asked questions related to ultimate load analysis on multiple circular web open-ings.It has been shown that the analysis method for pretensioned beams with multiple large circular web openings can be further simplified without sacrificing rationality. 展开更多
关键词 pretensioned inverted t-beam web opening
原文传递
Application of a concrete thermal pile in cooling the warming permafrost under climate change 被引量:1
19
作者 Yun-Hu SHANG Fu-Jun NIU +2 位作者 Guo-Yu LI Jian-Hong FANG Ze-Yong GAO 《Advances in Climate Change Research》 SCIE CSCD 2024年第1期170-183,共14页
Permafrost degradation caused by climate warming is posing a serious threat to the stability of cast-in-place pile foundations in warm permafrost regions.Ambient cold energy can be effectively utilized by two-phase cl... Permafrost degradation caused by climate warming is posing a serious threat to the stability of cast-in-place pile foundations in warm permafrost regions.Ambient cold energy can be effectively utilized by two-phase closed thermosyphons(TPCTs)to cool the permafrost.Therefore,we installed TPCTs in a cast-in-place pile foundation to create a unique structure called a thermal pile,which effectively utilizes the TPCTs to regulate ground temperature.And we conducted a case study and numerical simulation to exhibit the cooling performance,and optimize the structure of the thermal pile.The purpose of this study is to promote the application of thermal piles in unstable permafrost regions.Based on the findings,the thermal pile operated for approximately 53%of the entire year and effectively reduced the deep ground temperature at a rate of at least-0.1℃per year.Additionally,it successfully raised the permafrost table that is 0.35 m shallower than the natural ground level.These characteristics prove highly beneficial in mitigating the adverse effects of permafrost degradation and enhancing infrastructure safety.Expanding the length of the condenser section and the diameter of the TPCT in a suitable manner can effectively enhance the cooling capability of the thermal pile and ensure the long-term mechanical stability of the pile foundation even under climate warming. 展开更多
关键词 Heat transfer Cold energy Warm permafrost Two-phase closed thermosyphons cast-in-place pile foundation
原文传递
Capacity and failure mechanism of laterally loaded jet-grouting reinforced piles: Field and numerical investigation 被引量:7
20
作者 HE Ben WANG Li Zhong HONG Yi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第5期763-776,共14页
This study presents the results of field and numerical investigations of lateral stiffness, capacity, and failure mechanisms for plain piles and reinforced concrete piles in soft clay. A plastic-damage model is used t... This study presents the results of field and numerical investigations of lateral stiffness, capacity, and failure mechanisms for plain piles and reinforced concrete piles in soft clay. A plastic-damage model is used to simulate concrete piles and jet-grouting in the numerical analyses. The field study and numerical investigations show that by applying jet-grouting sur- rounding the upper 7.5D (D = pile diameter) of a pile, lateral stiffness and beating capacity of the pile are increased by about 110% and 100%, respectively. This is partially because the jet-grouting increases the apparent diameter of the pile, so as to en- large the extent of failure wedge and hence passive resistance in front of the reinforced pile. Moreover, the jet-grouting pro- vides a circumferential confinement to the concrete pile, which suppresses development of tensile stress in the pile. Corre- spondingly, tension-induced plastic damage in the concrete pile is reduced, causing less degradation of stiffness and strength of the pile than that of a plain pile. Effectiveness of the circumferential confinement provided by the jet-grouting, however, diminishes once the grouting cracks because of the significant vertical and circumferential tensile stress near its mid-depth. The lateral capacity of the jet-grouting reinforced pile is, therefore, governed by mobilized passive resistance of soil and plastic damage of jet-grouting. 展开更多
关键词 jet-grouting reinforced cast-in-place piles field test finite element analysis lateral bearing capacity lateral stiffness plastic damage failure mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部