At present,the precast construction technology has been widely used,especially in the process of bridge construction,where the precast box girder construction and erection technology has attracted more attention compa...At present,the precast construction technology has been widely used,especially in the process of bridge construction,where the precast box girder construction and erection technology has attracted more attention compared to other available methods.In order to effectively improve the application effect of this technology,and the overall quality of the bridge,this paper discusses the advantage and disadvantage of implementing the precast box girder construction and erection technology in the bridge construction.展开更多
In view of the problems such as backward production mode,poor quality stability,high safety risk and incomplete control system during erection of the reinforcement framework of simply-supported box girders for high-sp...In view of the problems such as backward production mode,poor quality stability,high safety risk and incomplete control system during erection of the reinforcement framework of simply-supported box girders for high-speed railway(HSR),and in combination with the key points and main challenges in the reinforcement framework construction of Guangzhou-Zhanjiang HSR,the overall technical route for the intelligent manufacturing of reinforcement framework of simply-supported box girders is put forward.The component design of reinforcement framework of simply supported box girder is carried out based on BIM,and the feasibility of the scheme is verified through segment assembly test.The assembly techniques are studied in combination with the mesh design scheme to achieve rapid forming of the reinforcement framework.R&D of automatic processing equipment for components,material transshipment equipment,automatic hoisting equipment and technological equipment for assembly clamping fixture are carried out to realize the overall design of equipment production line.An intelligent control system is developed for the whole-process intelligent construction of reinforcement framework to realize the full life-cycle applications for the workshop production and visual management including intelligent layout and quality traceability.The research results systematically optimize and innovate the assembly and forming technologies of reinforcement framework in the prefabrication beam yard of high-speed railway,realize the component processing,automatic assembly and information technology management,improve the construction quality,efficiency and information technology level of intelligent manufacturing of reinforcement framework of railway prefabricated beam as a whole,and reduce the construction cost of the project.The research has realized a major breakthrough in the construction technology of railway prefabricated box girders,which has the extensive technical and market promotion values.展开更多
为有效延长城市快速公交系统(BRT)站台铺装层的使用寿命并提升正交异性钢桥面板的抗疲劳性能,同时满足不中断交通的需求,提出了“正交异性钢桥面板+短剪力钉+预制超高性能混凝土(UHPC)板+TPO(薄层环氧抗滑铺装材料)”的复合桥面结构及...为有效延长城市快速公交系统(BRT)站台铺装层的使用寿命并提升正交异性钢桥面板的抗疲劳性能,同时满足不中断交通的需求,提出了“正交异性钢桥面板+短剪力钉+预制超高性能混凝土(UHPC)板+TPO(薄层环氧抗滑铺装材料)”的复合桥面结构及装配化施工工艺。以成都二环线高架桥BRT站台为工程背景,设计了BRT站台铺装层快速维修方案,通过有限元分析确定了最优方案,并开展了BRT站台钢桥面维修改造试验段的实施。有限元分析结果表明:10 mm UHPC灌浆料+50 mm预制UHPC板+10 mm TPO为最佳方案,维修方案的剪力钉受力性能、UHPC抗裂性能均满足结构受力需求,且具有较大的安全储备,改造后正交异性钢桥面板常见疲劳敏感细节的疲劳性能显著提升。结合试验段实施提出了涵盖UHPC板预制、原铺装层处理、预制UHPC板安装和磨耗层与沥青接缝施工4个流程的城市BRT站台铺装层维修施工工艺,为同类型公交站台铺装层维护提供了理论和技术支撑。展开更多
文摘At present,the precast construction technology has been widely used,especially in the process of bridge construction,where the precast box girder construction and erection technology has attracted more attention compared to other available methods.In order to effectively improve the application effect of this technology,and the overall quality of the bridge,this paper discusses the advantage and disadvantage of implementing the precast box girder construction and erection technology in the bridge construction.
文摘In view of the problems such as backward production mode,poor quality stability,high safety risk and incomplete control system during erection of the reinforcement framework of simply-supported box girders for high-speed railway(HSR),and in combination with the key points and main challenges in the reinforcement framework construction of Guangzhou-Zhanjiang HSR,the overall technical route for the intelligent manufacturing of reinforcement framework of simply-supported box girders is put forward.The component design of reinforcement framework of simply supported box girder is carried out based on BIM,and the feasibility of the scheme is verified through segment assembly test.The assembly techniques are studied in combination with the mesh design scheme to achieve rapid forming of the reinforcement framework.R&D of automatic processing equipment for components,material transshipment equipment,automatic hoisting equipment and technological equipment for assembly clamping fixture are carried out to realize the overall design of equipment production line.An intelligent control system is developed for the whole-process intelligent construction of reinforcement framework to realize the full life-cycle applications for the workshop production and visual management including intelligent layout and quality traceability.The research results systematically optimize and innovate the assembly and forming technologies of reinforcement framework in the prefabrication beam yard of high-speed railway,realize the component processing,automatic assembly and information technology management,improve the construction quality,efficiency and information technology level of intelligent manufacturing of reinforcement framework of railway prefabricated beam as a whole,and reduce the construction cost of the project.The research has realized a major breakthrough in the construction technology of railway prefabricated box girders,which has the extensive technical and market promotion values.
文摘为有效延长城市快速公交系统(BRT)站台铺装层的使用寿命并提升正交异性钢桥面板的抗疲劳性能,同时满足不中断交通的需求,提出了“正交异性钢桥面板+短剪力钉+预制超高性能混凝土(UHPC)板+TPO(薄层环氧抗滑铺装材料)”的复合桥面结构及装配化施工工艺。以成都二环线高架桥BRT站台为工程背景,设计了BRT站台铺装层快速维修方案,通过有限元分析确定了最优方案,并开展了BRT站台钢桥面维修改造试验段的实施。有限元分析结果表明:10 mm UHPC灌浆料+50 mm预制UHPC板+10 mm TPO为最佳方案,维修方案的剪力钉受力性能、UHPC抗裂性能均满足结构受力需求,且具有较大的安全储备,改造后正交异性钢桥面板常见疲劳敏感细节的疲劳性能显著提升。结合试验段实施提出了涵盖UHPC板预制、原铺装层处理、预制UHPC板安装和磨耗层与沥青接缝施工4个流程的城市BRT站台铺装层维修施工工艺,为同类型公交站台铺装层维护提供了理论和技术支撑。