The main purpose of this paper is to investigate the effect of core eccentricity on the structural behavior of concrete tall buildings.Concrete buildings of 55 floors with plan dimensions 48.0×48.0 m2 were invest...The main purpose of this paper is to investigate the effect of core eccentricity on the structural behavior of concrete tall buildings.Concrete buildings of 55 floors with plan dimensions 48.0×48.0 m2 were investigated.Three cases of main core locations are studied:centric(A),eccentric by one sixth(B)and one third(C)of building width.The three-dimensional finite element method has been used in conducting structural analysis through ETABS software.Gravity and lateral(wind and seismic)loadings are applied to all building cases.It has been concluded that the core location is the prime parameter governing the structural behavior of tall buildings.Although the first two cases(A,B)have acceptable and similar structural behaviors conforming to code limits,in the third case(C),the building behavior came beyond code limits.The author introduced remedial action by adding two secondary cores in the opposite direction of the main core(C-R)to restore the building behavior to the code limits.The results of this action were satisfactory.展开更多
Based on the plant model of 600-MW PWR,the molten core-concrete interactions(MCCI) under different models are studied.Station blackout (SBO) with steam-driven auxiliary feed water pump failure is selected as the case ...Based on the plant model of 600-MW PWR,the molten core-concrete interactions(MCCI) under different models are studied.Station blackout (SBO) with steam-driven auxiliary feed water pump failure is selected as the case for the model comparisons analysis.The result shows that thermal resistance model between debris and concrete has much influence on the consequence of MCCI.The concrete erosion rate calculated with gas film model is much higher than that of slag film model.Some other model comparisons such as the chemical reaction heat and the configuration molten pool are also discussed.展开更多
Reinforced concrete core dams can be an alternative solution to conventional dam designs either for permanent impounded reservoirs or flood protection and flood-retaining dams. Dams of this type have been constructed ...Reinforced concrete core dams can be an alternative solution to conventional dam designs either for permanent impounded reservoirs or flood protection and flood-retaining dams. Dams of this type have been constructed in Austria for various reasons and have shown good behavior during operation. For a better understanding of the load-deformation behavior of this type of dams during construction and impounding, numerical simulations were carried out. The interaction between the thin reinforced concrete core and the dam fill material as well as the influence of fill material properties and other main parameters, such as the roughness of the concrete surface and bedding conditions of the concrete core,on the deformation behavior of dams were examined. The results show that high compressive stress is mainly induced by arching effects in the dam body during construction. During the reservoir impounding, the compressive stresses in the core are reduced significantly while the bending moment in the core footing increases. The results also show that the maximum bending moments occur at the core footing and can be significantly reduced by design improvements. The findings in this study can provide general design recommendations for small dams with a central concrete core as a sealing blanket.展开更多
Aikou rockfill dam with asphalt-concrete core is situated in a karst area in Chongqing City, China. In order to study the operative conditions of the rockfill dam, especially those of the asphalt-concrete core, the Du...Aikou rockfill dam with asphalt-concrete core is situated in a karst area in Chongqing City, China. In order to study the operative conditions of the rockfill dam, especially those of the asphalt-concrete core, the Duncan model is adopted to compute the stress and strain of both the rockfill dam and the asphalt-concrete core after karst grouting and other treatments. The results indicate that the complicated stress and deformation of both the dam body and the core are within reasonable ranges. It is shown that structure design and foundation treatment of the dam are feasible and can be used as a reference for other similar projects.展开更多
The basic requirement of mechanical construction of cast-in-situ concrete is that it could not only conduct quality qualification and safety production, but also achieve most economic benefits with less investment und...The basic requirement of mechanical construction of cast-in-situ concrete is that it could not only conduct quality qualification and safety production, but also achieve most economic benefits with less investment under the condition to meet the needs of project duration. Therefore, the selection of construction machinery scheme plays an important role. However, in the actual construction, it is usually that operators rely on their own experience and field conditions to determine the mechanics. Such a method is subjective and arbitrary, and it is not conducive to make the construction rationally. Considering the above reasons, an improved weight coefficient method was used to establish an estimation model to estimate the construction machinery scheme of cast-in-situ concrete, so as to make the procedure much rational.展开更多
文摘The main purpose of this paper is to investigate the effect of core eccentricity on the structural behavior of concrete tall buildings.Concrete buildings of 55 floors with plan dimensions 48.0×48.0 m2 were investigated.Three cases of main core locations are studied:centric(A),eccentric by one sixth(B)and one third(C)of building width.The three-dimensional finite element method has been used in conducting structural analysis through ETABS software.Gravity and lateral(wind and seismic)loadings are applied to all building cases.It has been concluded that the core location is the prime parameter governing the structural behavior of tall buildings.Although the first two cases(A,B)have acceptable and similar structural behaviors conforming to code limits,in the third case(C),the building behavior came beyond code limits.The author introduced remedial action by adding two secondary cores in the opposite direction of the main core(C-R)to restore the building behavior to the code limits.The results of this action were satisfactory.
文摘Based on the plant model of 600-MW PWR,the molten core-concrete interactions(MCCI) under different models are studied.Station blackout (SBO) with steam-driven auxiliary feed water pump failure is selected as the case for the model comparisons analysis.The result shows that thermal resistance model between debris and concrete has much influence on the consequence of MCCI.The concrete erosion rate calculated with gas film model is much higher than that of slag film model.Some other model comparisons such as the chemical reaction heat and the configuration molten pool are also discussed.
文摘Reinforced concrete core dams can be an alternative solution to conventional dam designs either for permanent impounded reservoirs or flood protection and flood-retaining dams. Dams of this type have been constructed in Austria for various reasons and have shown good behavior during operation. For a better understanding of the load-deformation behavior of this type of dams during construction and impounding, numerical simulations were carried out. The interaction between the thin reinforced concrete core and the dam fill material as well as the influence of fill material properties and other main parameters, such as the roughness of the concrete surface and bedding conditions of the concrete core,on the deformation behavior of dams were examined. The results show that high compressive stress is mainly induced by arching effects in the dam body during construction. During the reservoir impounding, the compressive stresses in the core are reduced significantly while the bending moment in the core footing increases. The results also show that the maximum bending moments occur at the core footing and can be significantly reduced by design improvements. The findings in this study can provide general design recommendations for small dams with a central concrete core as a sealing blanket.
文摘Aikou rockfill dam with asphalt-concrete core is situated in a karst area in Chongqing City, China. In order to study the operative conditions of the rockfill dam, especially those of the asphalt-concrete core, the Duncan model is adopted to compute the stress and strain of both the rockfill dam and the asphalt-concrete core after karst grouting and other treatments. The results indicate that the complicated stress and deformation of both the dam body and the core are within reasonable ranges. It is shown that structure design and foundation treatment of the dam are feasible and can be used as a reference for other similar projects.
文摘The basic requirement of mechanical construction of cast-in-situ concrete is that it could not only conduct quality qualification and safety production, but also achieve most economic benefits with less investment under the condition to meet the needs of project duration. Therefore, the selection of construction machinery scheme plays an important role. However, in the actual construction, it is usually that operators rely on their own experience and field conditions to determine the mechanics. Such a method is subjective and arbitrary, and it is not conducive to make the construction rationally. Considering the above reasons, an improved weight coefficient method was used to establish an estimation model to estimate the construction machinery scheme of cast-in-situ concrete, so as to make the procedure much rational.