The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft...The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.展开更多
The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation o...The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation of the exterior?wall is a more feasible design to satisfy the energy efficiency of buildings in the?zone. However, the systematic research is urgently needed for the self-insulation of the exterior wall in the hot summer and cold winter zone of China. The paper tested the thermal performance of the common non-clay materials such as shale sintered hollow brick, sand autoclaved aerated concrete block, etc. by means of indoor experiments. The energy efficiency effect of the common materials was verified using dynamic calculation soft PKPM and several constitutions of exterior wall with different main bricks and insulation materials on the heat bridge were simulated, too. Besides, the tests of the thermal performance of exterior wall in real constructions were carried out to testify the practical effect of the recommended constitutions of exterior wall with different main bricks and insulation materials on the heat bridge. The conclusions are: the physical and thermal properties of the six non-clay wall material are better than the clay porous brick;the thermal performance of the non-clay brick can be improved obviously through the rational arrangement of the holes;shale sintered hollow brick after increasing the holes and rationalizing the hole arrangement and sand autoclaved aerated concrete block are recommended for buildings in the hot summer and cold winter area of China. The dynamic calculation results show that the thermal performances?of the non-clay materials are all satisfied with the energy efficiency;The heat transfer coefficient of the exterior wall with composition?③,?in which?the main wall was sand autoclaved aerated concrete block and the material on the heat bridge was sand autoclaved aerated concrete plate, is the smallest among the three recommended compositions.展开更多
This research will develop a set of assessment techniques and proce-dures for exterior wall deterioration detection.The proposed method is mainly based on equipped with high-resolution photographic equipment for unman...This research will develop a set of assessment techniques and proce-dures for exterior wall deterioration detection.The proposed method is mainly based on equipped with high-resolution photographic equipment for unmanned aerial vehicle(UAV).To overcome the problems of visual inspection difficulties due to diferent angles and height,the proposed method provides a safer and more efficient detection way to get the buildings'exterior status.After using the pro-posed method to analyze the images taken from UAV,the size of the damaged area can be evaluated more accurately,and the accuracy rate of visual assessment will be significantly improved.The results of the proposed method can reduce the accidents caused by the inspection process in the critical environment and the costs incured by the temporary facilities without sacrificing the quality of the inspection results.Then,the research will implement the existing visual assessment method because of the characteristics of rapid detection,however,the assessment results will be different from different inspectors due to subjectivity.Thus,the research will present an improved visual inspection method by using UAV and Forward Looking Infred Thermal technology (FLIR).The result will be presented by Condition Index(CI-Level)instead to improve the subjectivity of the personnel.展开更多
With the continuous development and progress of China's social economy,the construction speed of our construction industry is also accelerating.Compared with the traditional cast-in-place reinforced concrete and m...With the continuous development and progress of China's social economy,the construction speed of our construction industry is also accelerating.Compared with the traditional cast-in-place reinforced concrete and masonry building,it has been unable to meet the requirements of the construction industry and the development of the times.Because the prefabricated building has the advantages of fast speed,water saving,land saving,noise reduction,material saving and energy saving in installation.Compared with traditional buildings,the prefabricated building is more energy efficient and practical.Therefore,the new type of precast assembly architecture is constantly highlighted and has become the mainstream of the development of the future construction industry.However,the technology started late in China,and the immature technology and imperfect supporting standards led to slow progress and even stagnation in China's construction industry.Through the analysis of the present situation and problems of the waterproof and sealing of the prefabricated building exterior walls,the suggestions for the healthy development of the construction industry in China are put forward in time.展开更多
This paper mainly uses the method of numerical simulation, and study thermal insulation and energy saving characteristics on the exterior walls of the building and analyze the optimal layout scheme of building exterio...This paper mainly uses the method of numerical simulation, and study thermal insulation and energy saving characteristics on the exterior walls of the building and analyze the optimal layout scheme of building exterior wall and thermal insulation system. Finally, the paper study optimal thickness of insulation materials. The paper elaborate scheme of the existing building energy-saving for exterior wall and the scope of application, the system structure and the construction technology. The results showed that: extruded benzene board that can be used for exterior insulation, frame structure filled with wall preferred ceramsite hollow block. The paper can provides reference selection of insulation for building external wall energy-saving transformation scheme.展开更多
Existing fire test methods reply on measurement of the energy released rate to identify the combustion properties of a material. However, they are inadequate when assessing combustion characteristics of a composite ma...Existing fire test methods reply on measurement of the energy released rate to identify the combustion properties of a material. However, they are inadequate when assessing combustion characteristics of a composite material characterized by vertical flame spread and different inside/outside combustion behaviors. In addition, major factors that affect the flame spread outside the building include the combustion characteristics of materials used as well as air flow around a skyscraper. However, since it is highly difficult to analyze and forecast the air flow from a fire engineering viewpoint, an investigation of the flame spread characteristics of exterior walls of a building depends primarily on the combustion characteristics of materials. Hence, this study examined, using ISO 13785-2 testing method, the temperature changes and vertical flame spread behaviors of one of the finishing materials for exterior walls--(generic & fire-resistant) aluminium panels by a real-scale combustion experiment. According to the results of real-scale experiment, the maximum heat temperature of 987.7 ℃ was recorded seven minutes after the fire test was initiated while the fire-resistant aluminium panels showed the maximum heat temperature of 850.2℃ after exposed for approximately 12 min. The vertical flame spread properties put more emphasis on the time required to reach the maximum temperature rather than its magnitude and there was a five minutes difference between the materials.展开更多
文摘The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.
文摘The energy efficiency design of the exterior wall in the buildings of the hot summer and cold winter zone of China should consider the heat prevention in summer and the heat insulation in winter. The self-insulation of the exterior?wall is a more feasible design to satisfy the energy efficiency of buildings in the?zone. However, the systematic research is urgently needed for the self-insulation of the exterior wall in the hot summer and cold winter zone of China. The paper tested the thermal performance of the common non-clay materials such as shale sintered hollow brick, sand autoclaved aerated concrete block, etc. by means of indoor experiments. The energy efficiency effect of the common materials was verified using dynamic calculation soft PKPM and several constitutions of exterior wall with different main bricks and insulation materials on the heat bridge were simulated, too. Besides, the tests of the thermal performance of exterior wall in real constructions were carried out to testify the practical effect of the recommended constitutions of exterior wall with different main bricks and insulation materials on the heat bridge. The conclusions are: the physical and thermal properties of the six non-clay wall material are better than the clay porous brick;the thermal performance of the non-clay brick can be improved obviously through the rational arrangement of the holes;shale sintered hollow brick after increasing the holes and rationalizing the hole arrangement and sand autoclaved aerated concrete block are recommended for buildings in the hot summer and cold winter area of China. The dynamic calculation results show that the thermal performances?of the non-clay materials are all satisfied with the energy efficiency;The heat transfer coefficient of the exterior wall with composition?③,?in which?the main wall was sand autoclaved aerated concrete block and the material on the heat bridge was sand autoclaved aerated concrete plate, is the smallest among the three recommended compositions.
文摘This research will develop a set of assessment techniques and proce-dures for exterior wall deterioration detection.The proposed method is mainly based on equipped with high-resolution photographic equipment for unmanned aerial vehicle(UAV).To overcome the problems of visual inspection difficulties due to diferent angles and height,the proposed method provides a safer and more efficient detection way to get the buildings'exterior status.After using the pro-posed method to analyze the images taken from UAV,the size of the damaged area can be evaluated more accurately,and the accuracy rate of visual assessment will be significantly improved.The results of the proposed method can reduce the accidents caused by the inspection process in the critical environment and the costs incured by the temporary facilities without sacrificing the quality of the inspection results.Then,the research will implement the existing visual assessment method because of the characteristics of rapid detection,however,the assessment results will be different from different inspectors due to subjectivity.Thus,the research will present an improved visual inspection method by using UAV and Forward Looking Infred Thermal technology (FLIR).The result will be presented by Condition Index(CI-Level)instead to improve the subjectivity of the personnel.
文摘With the continuous development and progress of China's social economy,the construction speed of our construction industry is also accelerating.Compared with the traditional cast-in-place reinforced concrete and masonry building,it has been unable to meet the requirements of the construction industry and the development of the times.Because the prefabricated building has the advantages of fast speed,water saving,land saving,noise reduction,material saving and energy saving in installation.Compared with traditional buildings,the prefabricated building is more energy efficient and practical.Therefore,the new type of precast assembly architecture is constantly highlighted and has become the mainstream of the development of the future construction industry.However,the technology started late in China,and the immature technology and imperfect supporting standards led to slow progress and even stagnation in China's construction industry.Through the analysis of the present situation and problems of the waterproof and sealing of the prefabricated building exterior walls,the suggestions for the healthy development of the construction industry in China are put forward in time.
文摘This paper mainly uses the method of numerical simulation, and study thermal insulation and energy saving characteristics on the exterior walls of the building and analyze the optimal layout scheme of building exterior wall and thermal insulation system. Finally, the paper study optimal thickness of insulation materials. The paper elaborate scheme of the existing building energy-saving for exterior wall and the scope of application, the system structure and the construction technology. The results showed that: extruded benzene board that can be used for exterior insulation, frame structure filled with wall preferred ceramsite hollow block. The paper can provides reference selection of insulation for building external wall energy-saving transformation scheme.
文摘Existing fire test methods reply on measurement of the energy released rate to identify the combustion properties of a material. However, they are inadequate when assessing combustion characteristics of a composite material characterized by vertical flame spread and different inside/outside combustion behaviors. In addition, major factors that affect the flame spread outside the building include the combustion characteristics of materials used as well as air flow around a skyscraper. However, since it is highly difficult to analyze and forecast the air flow from a fire engineering viewpoint, an investigation of the flame spread characteristics of exterior walls of a building depends primarily on the combustion characteristics of materials. Hence, this study examined, using ISO 13785-2 testing method, the temperature changes and vertical flame spread behaviors of one of the finishing materials for exterior walls--(generic & fire-resistant) aluminium panels by a real-scale combustion experiment. According to the results of real-scale experiment, the maximum heat temperature of 987.7 ℃ was recorded seven minutes after the fire test was initiated while the fire-resistant aluminium panels showed the maximum heat temperature of 850.2℃ after exposed for approximately 12 min. The vertical flame spread properties put more emphasis on the time required to reach the maximum temperature rather than its magnitude and there was a five minutes difference between the materials.