期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Influence of mechanical reduction amount on internal quality of continuous casting billets by thermal and numerical simulation
1
作者 Dan-qing Jiang Shu-jian Sun +5 位作者 Han Wu Yang-jian Xu Fu-hai Zhu Zhen-qiang Zhang Jiang Wang Zhong-ming Ren 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第6期1234-1243,共10页
With establishment of thermal and numerical simulation models,the influence of reduction amount on solidification structure,segregation and shrinkage porosity of continuous casting(CC)billets was investigated.The ther... With establishment of thermal and numerical simulation models,the influence of reduction amount on solidification structure,segregation and shrinkage porosity of continuous casting(CC)billets was investigated.The thermal–mechanical coupled simulation results indicated that with an increase in reduction amount,the temperature in the central area decreases,and the reduction efficiency firstly increases and then decreases,reaching the maximum value at reduction amount of 6 mm.Metallographic analysis showed that increasing the reduction amount is beneficial for the refinement of central solidification structure.Moreover,the internal cracks are more likely to appear at higher reduction efficiency.The X-ray computerized tomography results revealed that a higher reduction amount can significantly reduce the volume fraction and equivalent diameter of the central shrinkage porosities of CC billets and increase the sphericity of them.Simultaneously,the macrosegregation of carbon along the central line is improved as the reduction amount increases;while the reduction amount exceeds 8 mm,the segregation degree will not change any more. 展开更多
关键词 Mechanical reduction Solidification structure POROSITY Thermal simulation Continuous casting billet
原文传递
Analysis of inhomogeneity of solidified microstructure of continuous casting copper tubular billet based on factor analysis
2
作者 Jin-song Liu Chao-rui Shan +3 位作者 Da-yong Chen Hong-wu Song Chuan-lai Chen Yun-yue Chen 《China Foundry》 SCIE EI CAS CSCD 2023年第6期526-536,共11页
The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous cast... The horizontal continuous casting process,the initial step in TP2 copper tubular processing,directly determines the microstructure and properties of copper tubular.However,the process parameters of the continuous casting characterize time variation,multiple disturbances and strong coupling.As a consequence,their influence on a casting billet is difficult to be determined.Due to the above issues,the common factor and special factor analysis of the factor analysis model were used in this study,and the casting experiment and billet metallographic experiment were carried out to diagnose and analyze the reason of the microstructure inhomogeneity.The multiple process parameters were studied and classified using common factor analysis,2 the cast billets with abnormal microstructures were identified by GT^(2) statistics,and the most important factors affecting the microstructural homogeneity were found by special factor analysis.The calculated and experimental results show that the principal parameters influencing the inhomogeneity of solidified microstructure are the primary inlet water pressure and the primary outlet water temperature.According to the consequence of the above investigation,the inhomogeneity of the copper billet microstructure can be effectively improved when the process parameters are controlled and adjusted. 展开更多
关键词 TP2 copper tubular billet horizontal continuous casting factor analysis microstructure inhomogeneity of casting billet quality diagnosis
下载PDF
Comparison and integration of final electromagnetic stirring and thermal soft reduction on continuous casting billet 被引量:8
3
作者 Yan-shen Han Wei Yan +3 位作者 Jiang-shan Zhang Jun Chen Wei-qing Chen Qing Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2021年第2期160-167,共8页
Final electromagnetic stirring(F-EMS)and thermal soft reduction(TSR)are techniques that improve the inner quality of continuous casting billets,but they have rarely been applied simultaneously.The application effects ... Final electromagnetic stirring(F-EMS)and thermal soft reduction(TSR)are techniques that improve the inner quality of continuous casting billets,but they have rarely been applied simultaneously.The application effects of F-EMS and TSR were compared,and a process integrating F-EMS and TSR was adopted for a billet continuous caster.A heat transfer model was established to calculate the thermal behavior of 82A tire cord steel billet.The locations of F-EMS and TSR were determined,followed by conducting a series of plant trials,involving F-EMS alone,TSR alone,and the integrated process of F-EMS and TSR.The results showed that F-EMS or TSR could effectively improve the inner quality of the billet under their respective suitable working conditions.Moreover,F-EMS was found to be more helpful in terms of improving central segregation,while TSR tended to improve V-segregation,central porosity,and pipe.The integration of F-EMS and TSR allowed the advantages of each technique to be utilized,thereby better improving the inner quality.Among all the working conditions,82A steel billet showed optimum inner quality when the current of F-EMS was 240 A and the cooling intensity of TSR was 2.2 m^(3) h^(−1).These findings demonstrate that the integration of F-EMS and TSR is promising for application on continuous casting billets. 展开更多
关键词 billet continuous casting Final electromagnetic stirring Thermal soft reduction Central segregation Inner quality
原文传递
Effect of electromagnetic stirring in mold on the macroscopic quality of high carbon steel billet 被引量:9
4
作者 Haiqi YU Miaoyong ZHU 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第6期461-467,共7页
An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EM... An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EMS on the solidification macrostructure of high carbon steel were investigated. The results show that the billet quality is not well controlled under the condition of working current and frequency with EMS, in which the subsurface crack of grade 1.0-2.0 ups to 38.09%, the central pipe of grade 1.0-1.5 reaches to 14.28%, and the central porosity of grade 1.5 is 14.29%. The parameters of current 260 A and frequency 8 Hz as the final optimum scheme has a remarkable effect for improving the macroscopic quality of billet, in which the subsurface crack, central pipe and skin blowhole are all disappeared, and the central porosity and carbon segregation are also well improved. 展开更多
关键词 Round billet continuous casting Electromagnetic stirring in mold Macroscopic quality High carbon steel
下载PDF
Optimization of flow control devices in a tenstrand billet caster tundish 被引量:3
5
作者 Shu-guo Zheng Miao-yong Zhu 《China Foundry》 SCIE 2016年第6期414-421,共8页
The physical model of a ten-strand billet caster tundish was established to study the effects of various flow control devices on the melt flow. Before and after the optimization of the melt flow, the inclusion removal... The physical model of a ten-strand billet caster tundish was established to study the effects of various flow control devices on the melt flow. Before and after the optimization of the melt flow, the inclusion removal in the tundish was evaluated by plant trials. The physical modeling results show that when combined with a baffle, the turbulence inhibitor, instead of the impact pad, can significantly improve the melt flow. A turbulence inhibitor with a longer length of inner cavity and without an extending lip at the top of the sidewall seems to be efficient in the improvement of the melt flow. Various types and designs of baffles all influence the flow characteristics significantly. The "V" type baffles are better than the straight baffles for flow control. The "V" type baffle with four inclined holes at the sidewall away from the stopper rods is better in melt flow control than the one with one inclined hole at each sidewall. The combination of a well-designed turbulence inhibitor and an appropriate baffle shows high efficiency on improving the melt flow and an optimal proposal was presented. Plant trials indicate that, compared with the original tundish configuration in prototype, the inclusions reduce by 42% and the inclusion distribution of individual strands is more similar with the optimal one. The optimal tundish configuration effectively improves the melt flow in the ten-strand billet caster tundish. 展开更多
关键词 billet continuous casting ten-strand caster tundish flow control device physical modeling plant trials
下载PDF
Numerical Simulation and Prediction for Sticking Type Breakout Behavior in Slab Contiuous Casting
6
作者 LIU Xiaoxia LIU Peizhong ZHOU Junqing (Machanical Engineering School, UST Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1997年第2期33-33,共1页
A two-dimensional heat transfer model was developed to calculate the mould wall temperature field under normal operations condition and to determine its changing behavior when breakout occured. On the numerical simula... A two-dimensional heat transfer model was developed to calculate the mould wall temperature field under normal operations condition and to determine its changing behavior when breakout occured. On the numerical simulation of sticking type breakout process and the breakout related wall temperature evolution, parameters of prediction were suggested. 展开更多
关键词 continuous casting sheet billet crystallizer sticking type breakout parameters of prediction
下载PDF
Application of Hot Strength and Ductility Test to Optimization of Secondary Cooling System in Billet Continuous Casting Process 被引量:4
7
作者 WANG Biao JI Zhen-ping +2 位作者 LIU Wen-hong MA Jiao-cheng XIE Zhi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第4期16-20,共5页
By means of Gleeble-1500 dynamic thermomechanical simulator, the continuous casting process for HRB335C steel was simulated using solidifying method and hot ductility and strength of the steel were determined. The tes... By means of Gleeble-1500 dynamic thermomechanical simulator, the continuous casting process for HRB335C steel was simulated using solidifying method and hot ductility and strength of the steel were determined. The test results indicate that there are three temperature regions of brittleness for HRB335C billet in the temperature range from 700 ℃ to solidification point; the first temperature region of brittleness is 1 300 ℃ to solidification point of the billet, the second temperature region of brittleness is 1 200-- 1 000 ℃, and the third temperature region of brittleness is 700-850 ℃ ; the steel is plastic at 850--1 000 ℃. The cracking sensitivity was studied in the different temperature zones of the brittleness for steel HRB335C and the target surface temperature curve for the secondary cooling is determined. With optimized process, the mathematical model of the steady temperature field with two-dimensional heat transfer for 150 mm×150 mm HRB335C steel billet was established to optimize the secondary cooling process. The conic relation of water distribution between secondary cooling water flux and casting speed is regressed. Keeping the surface temperature of billet before the straightening point above 1 000 ℃, the results of billet test indicate that there is free central shrinkage cavity. The billet defect is decreased greatly, and the quality of billet is obviously improved. 展开更多
关键词 continuous casting billet brittle temperature zone tensile strength secondary cooling SIMULATION
原文传递
Flow Control in Six-Strand Billet Continuous Casting Tundish With Different Configurations 被引量:14
8
作者 ZHONG Liang-cai WANG Ming-an +2 位作者 CHEN Bo-yu WANG Can-rong ZHU Ying-xiong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第7期7-12,共6页
A 1∶2.5 scale tundish model was set up in laboratory for a six-strand billet continuous casting tundish with different configurations to investigate fluid flow characteristics under different operational conditions b... A 1∶2.5 scale tundish model was set up in laboratory for a six-strand billet continuous casting tundish with different configurations to investigate fluid flow characteristics under different operational conditions by measuring residence time distribution curves.It was found that minimum residence time,maximum concentration time and average residence time of the three strands on the same side of the tundish with the former configuration under normal operation,that is,six strands were open,were small and non-uniform and the tundish had large dead volume fraction.Vortexes easily formed on the liquid surface in the pouring zone of the tundish.The fluid flow characteristics in the tundish with the optimal turbulence inhibitor and baffles were improved and became less non-uniform among the strands.Vortexes were not found on the pouring zone surface in the optimal tundish.For non-normal operation,that is,one strand was close,it was important to choose which strand to be closed for maintaining flow characteristics of the rest two strands.It was found from this investigation that fluid flow characteristics in the optimal configuration tundish with closing strand 2 were better than those with closing strand 3 on the same side. 展开更多
关键词 billet continuous casting six-strand tundish flow control physical modeling operational mode
原文传递
Solidification Structure of Continuous Casting Large Round Billets under Mold Electromagnetic Stirring 被引量:6
9
作者 Tao SUN Feng YUE +3 位作者 Hua-jie WU Chun GUO Ying LI Zhong-cun MA 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第4期329-337,共9页
The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures... The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity. 展开更多
关键词 continuous casting large round billet solidification structure cellular-automaton-finite-element method mold electromagnetic stirring central equiaxed grain zone grain size
原文传递
Dynamic Water Modeling and Application of Billet Continuous Casting 被引量:5
10
作者 LIU Wen-hong XIE Zhi +3 位作者 JI Zhen-ping WANG Biao LAI Zhao-yi JIA Guang-lin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第2期14-17,共4页
The continuous casting process is used for solidifying molten steel into semi-finished steel.The technology of secondary cooling is extremely important for output of the casting machine and billet quality.A dynamic wa... The continuous casting process is used for solidifying molten steel into semi-finished steel.The technology of secondary cooling is extremely important for output of the casting machine and billet quality.A dynamic water model was introduced,including solidification model in the secondary cooling,feedforward control strategy based on continuous temperature measurement in tundish,and feedback control strategy based on surface temperature measurement.The mathematical model of solidification process was developed according to the principle of solidification,and the solidification model was validated by measuring billet shell thickness through shooting nail and sulfur print.Primary water distribution was calculated by the solidification model according to procedure parameters,and it was adjusted by the other two control strategies online.The model was applied on some caster and billet quality was obviously improved,indicating that the dynamic water model is better than conventional ones. 展开更多
关键词 billet continuous casting secondary cooling water models billet quality
原文传递
Optimization of submerged entry nozzle parameters for ultra-high casting speed continuous casting mold of billet 被引量:2
11
作者 Pei Xu Yong-zhi Zhou +2 位作者 Deng-fu Chen Mu-jun Long Hua-mei Duan 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2022年第1期44-52,共9页
Controlling the flow behavior in the mold in an appropriate way is the basis for realizing the billet ultra-high speed continuous casting.Based on the new proposed physical water modeling experiment considering the ef... Controlling the flow behavior in the mold in an appropriate way is the basis for realizing the billet ultra-high speed continuous casting.Based on the new proposed physical water modeling experiment considering the effects of solidified shell and hydrostatic pressure,the flow behavior in the mold with cross section of 160 mm 9160 mm during continuous casting of billet is regulated by optimizing the inner diameters and immersion depths of submerged entry nozzle at the ultra-high casting speeds of 5.0–6.5 m/min.The results show that under the premise of no slag entrainment,as well as uniform coverage and keeping good fluidity of liquid slag layer on the top free surface of the fluid in the mold,the appropriate parameters of submerged entry nozzle under the ultra-high casting speed of billet are 50 mm in inner diameter,95 mm in outer diameter and 180 mm in immersion depth.And on the basis of the obtained parameters of submerged entry nozzle,it can be known that the reasonable ranges of level fluctuation and impacting depth of the stream in the mold are about 0.82-1.11 and 593-617 mm,respectively. 展开更多
关键词 Ultra-high casting speed billet continuous casting Submerged entry nozzle Physical water modeling Flow behavior
原文传递
Effect of Magnetic Stirrer Imposed in the Inner-Mold on Continuous Casting Hollow Billet
12
作者 ZHANG Qi WANG Jin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第S2期973-976,共4页
In order to improve the quality of continuous casting hollow steel billet,especially the inner surface quality,the technology of installing magnetic stirrer in the inner-mold during the hollow billet continuous castin... In order to improve the quality of continuous casting hollow steel billet,especially the inner surface quality,the technology of installing magnetic stirrer in the inner-mold during the hollow billet continuous casting was put forward,and structure and electrical parameter of magnetic stirrer were studied by numerical simulation method,and static simulation experiment was done,the results show that:1)the greater the current strength,the solidification rate and temperature gradient of molten metal are lower,and therefore it helps to form fine equiaxial crystal structure,however when the current strength is too large,it is not obvious to change the equiaxial crystal size,and the excessive velocity of the melt will result in segregation defects.2)Three-phase magnetic stirrer has higher stirring effect than that of two-phase one.3)Tooth width of yoke should be small to improve the stirring effect.The numerical simulation results can provide the theory basis to optimize the electromagnetic continuous casting technology. 展开更多
关键词 continuous casting hollow billet magnetic stirrer inner mold
原文传递
Trial Production of Sulphurous Free-Cutting Gear Steel by Convert-Billet Continuous Casting Process
13
作者 CHEN Liang, CHEN Tian-ming, ZENG Jian-hua, CHEN Yong (Pangang Group Research Institute Co, Ltd, Chengdu 611731, Sichuan, China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S2期394-398,共5页
In consideration of the composition characteristics and quality requirements of sulphurous free-cutting gear steel, the rational measures of sulfur control, calcium treatment and key technologies of continuous casting... In consideration of the composition characteristics and quality requirements of sulphurous free-cutting gear steel, the rational measures of sulfur control, calcium treatment and key technologies of continuous casting process are applied in the development of a full-line operation of LD-Billet continuous casting on steelmaking with semi-steel, which suggests an economic production of the steel has been realized. Test results show that the average retrieval rate of sulphurous alloy in the process of RH treatment is 95.3% and sulfur content of products is stability. Otherwise, content of T[O] in casting billet is in the range of 11×10-6 ~ 18×10-6 with average value is 14.7×10-6.Based on this, the billets have good surface quality and internal quality. 展开更多
关键词 free-cutting gear steel billet continuous casting sulphurous iron
原文传递
Effect of superheat on quality of central equiaxed grain zone of continuously cast bearing steel billet based on two-dimensional segregation ratio 被引量:8
14
作者 Wei Wang Zi-bing Hou +1 位作者 Yi Chang Jiang-hai Cao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第1期9-18,共10页
The quality of central equiaxed grain zone (CEGZ) of GCr15 bearing steel billets was investigated at different superheats (20, 25 and 35 ℃ by experimental observations and a finite element model in order to optimi... The quality of central equiaxed grain zone (CEGZ) of GCr15 bearing steel billets was investigated at different superheats (20, 25 and 35 ℃ by experimental observations and a finite element model in order to optimize superheat in continuous casting process. Several GCrl5 billets were collected from the continuous casting shop, and the same CEGZ was chosen for comparison of internal quality of GCrl5 billets. Considering the limitation of segregation index at some points, two- dimensional segregation ratio in CEGZ was introduced. Firstly, the segregation ratio and the area of center large dark points in CEGZ obtain the minimum at 25 ℃ superheat, which indicates that the quality of CEGZ at 25 ~C superheat is improved compared with those at 20 and 35 ℃ superheats for corresponding continuously cast billets. The highest superheat and the lowest superheat are not beneficial for improving the central zone quality in the billets. Secondly, the quality of CEGZ of GCr15 billets increases with a decrease in the secondary dendrite arm spacing of CEGZ. Finally, according to the established finite element model, it is deduced that the secondary dendrite arm spacing of CEGZ is closely related to its later solidifica- tion time at solid fraction of 0.5-1.0, and the former will be decreased when decreasing the latter. 展开更多
关键词 SUPERHEAT Continuously cast billet Equiaxed grain zone SEGREGATION Solidification time
原文传递
Void Closure Behavior in Large Diameter Steel Rod during H-V Rolling Process 被引量:1
15
作者 Hua-gui HUANG Yong LIU +1 位作者 Feng-shan DU Lei CHEN 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第3期287-294,共8页
In order to reveal the mechanism and condition of void closure in large diameter steel rod during horizontal- vertical (H-V) groove rolling process, a three-dimensional thermomechanicaily coupled finite element mode... In order to reveal the mechanism and condition of void closure in large diameter steel rod during horizontal- vertical (H-V) groove rolling process, a three-dimensional thermomechanicaily coupled finite element model was es- tablished for 9-stand H-V groove rolling process aiming at a 4150 mm steel rod production line. A spherical hole with diameter from 2 to 10 mm was preset into the center of continuous casting billet with a rectangle cross section of 300 mmX 360 mm in this model to simulate the void defect, and then finite element analyses were carried out to observe and quantify the void shape evolution in each pass on the three orthogonal coordinate plane sections. The re- suits showed that the void was formed roughly in the reduction and extension directions, and crushed gradually from spherical shape to an approximate ellipsoid, micro-crack and finally to be closed. A quantitative analysis was carried out by using elliptic radii and closure ratio to describe this evolution process; it indicated that the longest axis of the ellipsoid coincided with the rolling line, and the second and third axes were alternatively ihorizontal and vertical on the exit cross section according to change of the reduction direction in H-V groove. The void closure behavior during H- V rolling was more complicated than that of common horizontal rolling, and the influence of groove type and the ex- tension coefficient on the void closure ratio was presented. Finally, a pilot rolling experiment was performed on a 5- stand H-V experimental mill to verify the numerical simulation results, and the experimental results are in good agree- ment with the numerical simulation results. 展开更多
关键词 large diameter steel rod continuous casting billet H-V groove rolling~ void closure FEM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部