期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Multiphase Flow and Thermo-Mechanical Behaviors of Solidifying Shell in Continuous Casting Mold 被引量:1
1
作者 ZHU Miao-yong CAI Zhao-zhen YU Hai-qi 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2013年第3期6-17,共12页
The metallurgical phenomena occurring in the continuous casting mold have a significant influence on the performance and the quality of steel product.The multiphase flow phenomena of molten steel,steel/slag interface ... The metallurgical phenomena occurring in the continuous casting mold have a significant influence on the performance and the quality of steel product.The multiphase flow phenomena of molten steel,steel/slag interface and gas bubbles in the slab continuous casting mold were described by numerical simulation,and the effect of electromagnetic brake(EMBR) and argon gas blowing on the process were investigated.The relationship between wavy fluctuation height near meniscus and the level fluctuation index F,which reflects the situation of mold flux entrapment,was clarified.Moreover,based on a microsegregation model of solute elements in mushy zone with δ/γ transformation and a thermo-mechanical coupling finite element model of shell solidification,the thermal and mechanical behaviors of solidifying shell including the dynamic distribution laws of air gap and mold flux,temperature and stress of shell in slab continuous casting mold were described. 展开更多
关键词 continuous casting mold multiphase flow heat transfer solidification numerical simulation
原文传递
Effect of squeeze casting process on microstructures and flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy 被引量:2
2
作者 Yuan-ji Shi Lan-ji Liu +4 位作者 Lei Zhang Li-jun Zhang Li Zheng Run-xia Li Bao-yi Yu 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第9期957-965,共9页
The effects of squeeze casting process on microstructure and flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy were investigated and the hot-compression tests of gravity casting and squeeze casting alloy were carried ... The effects of squeeze casting process on microstructure and flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy were investigated and the hot-compression tests of gravity casting and squeeze casting alloy were carried out at 350-500°C and 0.001-5s-1.The results show that microstructures of Al-17.5Si-4Cu-0.5Mg alloys were obviously improved by squeeze casting.Due to the decrease of coarse primary Si particles,softα-Al dendrite as well as the fine microstructures appeared,and the mechanical properties of squeeze casting alloys were improved.However,when the strain rate rises or the deformation temperature decreases,the flow stress increases and it was proved that the alloy is a positive strain rate sensitive material.It was deduced that compared with the gravity casting alloy,squeeze casting alloy(solidified at 632 MPa)is more difficult to deform since the flow stress of squeeze casting alloy is higher than that of gravity casting alloy when the deformation temperature exceeds 400°C.Flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy can be described by a hyperbolic sine form with Zener-Hollomon parameter,and the average hot deformation activation energy Q of gravity casting alloy and squeeze casting alloy is 278.97 and 308.77kJ/mol,respectively. 展开更多
关键词 Squeeze casting Al-Si-Cu-Mg alloy Hot compression deformation flow stress Constitutive equation
原文传递
Morphology and microstructure of rapidly solidified tin-lead alloy powders
3
作者 Xiang Qingchun Zhang Wei +2 位作者 Qiu Keqiang Qu Yingdong Li Rongde 《China Foundry》 SCIE CAS 2014年第5期428-434,共7页
Sn60Pb40 alloy powders were fabricated using the planar flow casting(PFC) atomization process. By using OM, SEM and EPMA, the characteristics of the morphologies and microstructures of the powders have been investigat... Sn60Pb40 alloy powders were fabricated using the planar flow casting(PFC) atomization process. By using OM, SEM and EPMA, the characteristics of the morphologies and microstructures of the powders have been investigated. It is observed that the environment of ambient gas in the atomization box has great effects on the morphology of the alloy powders. The microstructures of Sn60Pb40 alloy powders produced by the PFC atomization process are completely composed of eutectic, which is made up of both oversaturated α solid solution and β solid solution. The microstructures of small size powders are extraordinarily undeveloped dendritic eutectic, in which the large majority of the α phase appears nearly spherical, evidently since the cooling rate is higher and the under-cooling is larger. As for the large size powders, since the cooling rate and undercooling are relatively low, lamellar α phase apparently increases in the eutectic microstructures of these powders, and there is even typical lamellar eutectic structure clearly observed in some micro-areas. After remelting tests by DTA, the microstructures of small size powders are transformed, which become composed of large crumby α phase and eutectic(α+β), while those of large size powders change into classical tin-lead structures of primary α phase plus lamellar eutectic(α+β). By studying the microstructures of tin-lead alloy powders, a model has been proposed to predict the microstructure formation of Sn60Pb40 alloy powders. 展开更多
关键词 rapid solidification planar flow casting tin-lead alloy metal powders MICROSTRUCTURE
下载PDF
Flow field, heat transfer and inclusion behavior in a round bloom mold under effect of a swirling flow submerged entry nozzle 被引量:1
4
作者 Qing-hua Xie Pei-yuan Ni +2 位作者 Toshihiro Tanaka Mikael Ersson Ying Li 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第6期1211-1221,共11页
Flow field,heat transfer and inclusion behavior in a 700 mm round bloom mold under the effect of a swirling flow submerged entry nozzle(SEN)were investigated with the aim to enhance the casting process.The results ind... Flow field,heat transfer and inclusion behavior in a 700 mm round bloom mold under the effect of a swirling flow submerged entry nozzle(SEN)were investigated with the aim to enhance the casting process.The results indicate that the impinging flow phenomenon,which is commonly observed in conventional single-port SEN casting,was completely suppressed by the swirling flow SEN coming from a novel swirling flow generator design in tundish.Steel from the SEN port moved towards the mold wall in 360 direction,leading to a uniform temperature distribution in the mold.Compared to a conventional single-port SEN casting,the steel super-heat was decreased by about 5 K at the mold center,and the temperature was increased by around 3.5 K near the meniscus.In addition,the removal ratio of inclusions to the mold top surface in the swirling flow SEN casting was found to be increased.Specifically,the removal ratio of spherical inclusions with diameters of 1,10,50 and 100μm was increased by 18.2%,18.5%,22.6% and 42.7%,respectively.Furthermore,the ratio was raised by 18.2%,20.8%,21.5% and 44.1%for non-spherical inclusions,respectively. 展开更多
关键词 Large round bloom Swirling flow submerged entry nozzle casting flow field Heat transfer Inclusion behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部