Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated....Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.Results show that the mechanical vibration has a remarkable influence on the filling and solidification processes.It is found that after mechanical vibration,the filling rate increases and the filling rate at different times is more uniform than that without vibration.In addition,the mechanical vibration also increases the wettability between liquid AZ91D and A356 inlays.The mechanical vibration reduces the horizontal and vertical temperature gradient of the casting and makes the temperature distribution of the whole casting more uniform.Compared to the Al/Mg bimetal without vibration,the shear strength is improved by 39.76%after the mechanical vibration is applied,due to the decrease of the inclusions and Al_(12)Mg_(17) dendrites,and the refinement and uniform distribution of the Mg_(2)Si particles in the interface of the Al/Mg bimetal.展开更多
Light metals are gaining increased attention due to ecological sustainability concerns and strict emission regulations. Magnesium(Mg)is one such metal that has the potential to replace high density components, which c...Light metals are gaining increased attention due to ecological sustainability concerns and strict emission regulations. Magnesium(Mg)is one such metal that has the potential to replace high density components, which can reduce emissions through lightweighting. However,the mechanical properties of Mg alloys must be improved for them to become viable candidates for structural applications. To this end, the current study examines the effect of sonication vibrational amplitude on the microstructure and mechanical properties of AZ91E Mg alloy.The molten alloys were subjected to ultrasonic treatment at a frequency of 20 kHz, 180 s of processing time and vibrational amplitudes ranging from 1.25 to 15 μm. The resultant castings were characterized using optical microscopy, scanning electron microscopy and tensile testing. It was found that sonication with amplitudes up to 7.5 μm was able to effectively refine the secondary phases of the alloy. Similar trends were observed for grain size and yield strength. The refinement in microstructure was likely caused by the finer grain size and cavitation induced undercooling of the liquid metal. In addition, it was also noted that even the lowest level of amplitude(1.25 μm) was able to increase the density, improve the ultimate tensile strength and ductility of the castings. The tensile strength and ductility were thought to have been enhanced by ultrasonic degassing and refinement in microstructure, while the yield strength was improved through the Hall-Petch effect. The results from this study provided a basis for optimizing the sonication process and promoting its use in industry. As a result, Mg alloys improved through ultrasonic processing have the potential to replace higher density components, with consequent energy efficiency and environmental and ecological benefits.展开更多
The subject that concerns us in this work is the numerical simulation and optimal control of equilibrium of the continuous chemical lasers (CCLs). Laser Chemistry: Spectroscopy, Dynamics and Applications are a careful...The subject that concerns us in this work is the numerical simulation and optimal control of equilibrium of the continuous chemical lasers (CCLs). Laser Chemistry: Spectroscopy, Dynamics and Applications are a carefully structured introduction to the basic theory and concepts of this subject. In this paper we present the design and discuss the performances of a continuous DF chemical laser, based on the exothermic reaction: F+D2→DF(v,j)展开更多
基金This work was funded by the National Natural Science Foundation of China(Nos.52075198,52271102 and 52205359)the China Postdoctoral Science Foundation(No.2021M691112).
文摘Al/Mg bimetal was prepared by lost foam solid-liquid compound casting,and the effects of mechanical vibration on the filling and solidification behavior,microstructure and performance of the bimetal were investigated.Results show that the mechanical vibration has a remarkable influence on the filling and solidification processes.It is found that after mechanical vibration,the filling rate increases and the filling rate at different times is more uniform than that without vibration.In addition,the mechanical vibration also increases the wettability between liquid AZ91D and A356 inlays.The mechanical vibration reduces the horizontal and vertical temperature gradient of the casting and makes the temperature distribution of the whole casting more uniform.Compared to the Al/Mg bimetal without vibration,the shear strength is improved by 39.76%after the mechanical vibration is applied,due to the decrease of the inclusions and Al_(12)Mg_(17) dendrites,and the refinement and uniform distribution of the Mg_(2)Si particles in the interface of the Al/Mg bimetal.
基金the kind support of the Natural Sciences and Engineering Research Council (NSERC) for the award of Canada Graduate Scholarships (CGSD3-535728 – 2019 and CGSD3-559982-2021)。
文摘Light metals are gaining increased attention due to ecological sustainability concerns and strict emission regulations. Magnesium(Mg)is one such metal that has the potential to replace high density components, which can reduce emissions through lightweighting. However,the mechanical properties of Mg alloys must be improved for them to become viable candidates for structural applications. To this end, the current study examines the effect of sonication vibrational amplitude on the microstructure and mechanical properties of AZ91E Mg alloy.The molten alloys were subjected to ultrasonic treatment at a frequency of 20 kHz, 180 s of processing time and vibrational amplitudes ranging from 1.25 to 15 μm. The resultant castings were characterized using optical microscopy, scanning electron microscopy and tensile testing. It was found that sonication with amplitudes up to 7.5 μm was able to effectively refine the secondary phases of the alloy. Similar trends were observed for grain size and yield strength. The refinement in microstructure was likely caused by the finer grain size and cavitation induced undercooling of the liquid metal. In addition, it was also noted that even the lowest level of amplitude(1.25 μm) was able to increase the density, improve the ultimate tensile strength and ductility of the castings. The tensile strength and ductility were thought to have been enhanced by ultrasonic degassing and refinement in microstructure, while the yield strength was improved through the Hall-Petch effect. The results from this study provided a basis for optimizing the sonication process and promoting its use in industry. As a result, Mg alloys improved through ultrasonic processing have the potential to replace higher density components, with consequent energy efficiency and environmental and ecological benefits.
文摘The subject that concerns us in this work is the numerical simulation and optimal control of equilibrium of the continuous chemical lasers (CCLs). Laser Chemistry: Spectroscopy, Dynamics and Applications are a carefully structured introduction to the basic theory and concepts of this subject. In this paper we present the design and discuss the performances of a continuous DF chemical laser, based on the exothermic reaction: F+D2→DF(v,j)