PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was em...PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was employed as the sulfonating agent to functionalize the external surface of the inorganic filler,i.e.,graphene oxide.The proton conductivities of the newly prepared proton exchange membranes(PEMs)were increased by increasing the temperature and content of sulfonated graphene oxide(SGO),i.e.,ranging from 0.025 S/cm to 0.060 S/cm.The induction of the optimum level of SGO is determined to be an excellent route to enhance ionic conductivity.The single-cell performance test was conducted by sandwiching the newly prepared PEMs between an anode(0.2 mg/cm^(2) Pt/Ru)and a cathode(0.2 mg/cm^(2) Pt)to prepare membrane electrode assemblies,followed by hot pressing under a pressure of approximately 100 kg/cm^(2) at 60℃for 5–10 min.The highest power densities achieved with PPMG PEMs were 14.9 and 35.60 mW/cm^(2) at 25℃and 70℃,respectively,at ambient pressure with 100%relative humidity.Results showed that the newly prepared PEMs exhibit good electrochemical performance.The results indicated that the prepared composite membrane with 6 wt%filler can be used as an alternative membrane for applications of high-performance proton exchange membrane fuel cell.展开更多
In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The...In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The microstructures,XRD patterns,FTIR spectra,UV-Vis-NIR spectra thermo-conductivity,thermo-stability and photothermal effects of these composite films were all characterized.These results indicated that Ti_(2)O_(3) particles were well dispersed throughout the polyvinyl alcohol(PVA)matrix in the PVA/Ti_(2)O_(3) composite films.And Ti_(2)O_(3) particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature(about 57.4℃for film with 15 wt%Ti_(2)O_(3) amount)on the surface when it was irradiated by a simulated sunlight source(1 kW/m^(2)).展开更多
A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styren...A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styrene/Cu (ABS/Cu) gradient polymeric composites were prepared successfully using this technique. The gradient structures, electrically conductive performance and mechanical properties of the ABS/Cu composites were investigated. Optical microscope observation shows that the gradient distribution of Cu particles in ABS matrix was formed along their thickness-direction. The electrically conductive testing results indicate that the order of magnitude of surface resistivity was kept in 10^15 Ω at ABS rich side, while that declined to 10^5 Ω at Cu particles rich side, and the percolation threshold was in the range of 2.82 vo1%- 4.74 vol% Cu content at Cu particles rich side. Mechanical test shows that the tensile strength reduced insignificantly as the content of Cu increases owing to the gradient distribution.展开更多
Ferroelectric polymer poly(vinylidene fluoride)(PVDF)has received great research interest because of its special electroactive properties which are strongly dependent on the crystalline structures and in turn processi...Ferroelectric polymer poly(vinylidene fluoride)(PVDF)has received great research interest because of its special electroactive properties which are strongly dependent on the crystalline structures and in turn processing conditions.The effect of molecular weight and crystallization temperature on the micro-structure and macro-properties of PVDF films casted from dimethyl sulfoxide(DMSO)solvent is investigated.The results demonstrated that a low molecular weight(180 kg/mol)and a low evaporation temperature(50℃)favored the formation of polarγ-phase,while a high molecular weight(1000 kg/mol)and a high evaporation temperature(125℃)made PVDF crystallize intoα-phase.Compared with films casted at 50℃,films casted at 125℃exhibited higher dielectric loss at a low electric field and less loss conductivity at a high electric field,which was due to their low degrees of crystallinity and fine evaporation of the solvent,respectively.PVDF with a molecular weight of 180 kg/mol casted at 125℃exhibited the highest remnant polarization(0.062 C/m^(2))among all of the solution-processed films,being a result of high chain mobility resulted from the low molecular weight.展开更多
The surface chemical structure development in solution-cast styrene(S)/butadiene(B) block copolymer films as a function of solvent evaporation time was investigated using sum frequency generation vibrational spectrosc...The surface chemical structure development in solution-cast styrene(S)/butadiene(B) block copolymer films as a function of solvent evaporation time was investigated using sum frequency generation vibrational spectroscopy(SFG).The surface structure formation of the styrene(S)/butadien(B) block copolymer(30 wt% PS) films during the solution-to-film process was found to be controlled mainly by dynamic factors,such as the mobility of the PB block in solution.For SB diblock copolymers,a pure PB surface layer was formed only when the film was cast by dilute toluene solution.With increasing concentration of casting solution,PB and PS components were found to coexist on the film surface,and the morphology of the PB component on the film surface changed from cylindrical rods to spheres.For SBS triblock copolymers,a small amount of PS component existed on the surface even if the film was cast by 1.0 wt% toluene solution.In addition,PS components at the outermost layer of the film increased and the length of PB cylindrical rods on the surface decreased with increasing concentration of casting solution.展开更多
文摘PPMG-based composite electrolytes were fabricated via the solution method using the polyvinyl alcohol and polyvinylpyrrolidone blend reinforced with various contents of sulfonated inorganic filler.Sulfuric acid was employed as the sulfonating agent to functionalize the external surface of the inorganic filler,i.e.,graphene oxide.The proton conductivities of the newly prepared proton exchange membranes(PEMs)were increased by increasing the temperature and content of sulfonated graphene oxide(SGO),i.e.,ranging from 0.025 S/cm to 0.060 S/cm.The induction of the optimum level of SGO is determined to be an excellent route to enhance ionic conductivity.The single-cell performance test was conducted by sandwiching the newly prepared PEMs between an anode(0.2 mg/cm^(2) Pt/Ru)and a cathode(0.2 mg/cm^(2) Pt)to prepare membrane electrode assemblies,followed by hot pressing under a pressure of approximately 100 kg/cm^(2) at 60℃for 5–10 min.The highest power densities achieved with PPMG PEMs were 14.9 and 35.60 mW/cm^(2) at 25℃and 70℃,respectively,at ambient pressure with 100%relative humidity.Results showed that the newly prepared PEMs exhibit good electrochemical performance.The results indicated that the prepared composite membrane with 6 wt%filler can be used as an alternative membrane for applications of high-performance proton exchange membrane fuel cell.
基金Funded by the Youth Backbone Teacher Training Plan in University of Henan Province(No.21220028)Science and Technology Research Project of Henan Province(No.242102321066)+2 种基金Natural Science Foundation of Henan Province(No.232300420312)Henan University of Technology Young Backbone Teacher Training Plan(No.21421260)the Innovation Training Program for College Students in Henan Province(No.202310463046)。
文摘In this work,flexible photothermal PVA/Ti_(2)O_(3) composite films with different amount(0 wt%,5 wt%,10 wt%,15 wt%)of Ti_(2)O_(3) particles modified by steric acid were prepared by a simple solution casting method.The microstructures,XRD patterns,FTIR spectra,UV-Vis-NIR spectra thermo-conductivity,thermo-stability and photothermal effects of these composite films were all characterized.These results indicated that Ti_(2)O_(3) particles were well dispersed throughout the polyvinyl alcohol(PVA)matrix in the PVA/Ti_(2)O_(3) composite films.And Ti_(2)O_(3) particles could also effectively improve the photothermal properties of the composite films which exhibited high light absorption and generated a high temperature(about 57.4℃for film with 15 wt%Ti_(2)O_(3) amount)on the surface when it was irradiated by a simulated sunlight source(1 kW/m^(2)).
基金Funded by the National Natural Science Foundation of China(No.21274007)the Beijing Natural Science Foundation+1 种基金the Key Scientific Project of Beijing Municipal Education Commission(No.KZ201110011014)the Science and Technology Innovation Platform of Beijing Municipal Education Commission(No.PXM2012-014213-000025)
文摘A novel technique for preparing functionally gradient electrically conductive polymeric composites was developed by using of solution casting technique on the principle of Stokes' law. Acrylonitrile- butadiene-styrene/Cu (ABS/Cu) gradient polymeric composites were prepared successfully using this technique. The gradient structures, electrically conductive performance and mechanical properties of the ABS/Cu composites were investigated. Optical microscope observation shows that the gradient distribution of Cu particles in ABS matrix was formed along their thickness-direction. The electrically conductive testing results indicate that the order of magnitude of surface resistivity was kept in 10^15 Ω at ABS rich side, while that declined to 10^5 Ω at Cu particles rich side, and the percolation threshold was in the range of 2.82 vo1%- 4.74 vol% Cu content at Cu particles rich side. Mechanical test shows that the tensile strength reduced insignificantly as the content of Cu increases owing to the gradient distribution.
基金Fundamental Research Funds for the Central Universities,China(No.2232021D-01)Shanghai Pujiang Program,China(No.20PJ1400600)。
文摘Ferroelectric polymer poly(vinylidene fluoride)(PVDF)has received great research interest because of its special electroactive properties which are strongly dependent on the crystalline structures and in turn processing conditions.The effect of molecular weight and crystallization temperature on the micro-structure and macro-properties of PVDF films casted from dimethyl sulfoxide(DMSO)solvent is investigated.The results demonstrated that a low molecular weight(180 kg/mol)and a low evaporation temperature(50℃)favored the formation of polarγ-phase,while a high molecular weight(1000 kg/mol)and a high evaporation temperature(125℃)made PVDF crystallize intoα-phase.Compared with films casted at 50℃,films casted at 125℃exhibited higher dielectric loss at a low electric field and less loss conductivity at a high electric field,which was due to their low degrees of crystallinity and fine evaporation of the solvent,respectively.PVDF with a molecular weight of 180 kg/mol casted at 125℃exhibited the highest remnant polarization(0.062 C/m^(2))among all of the solution-processed films,being a result of high chain mobility resulted from the low molecular weight.
基金support from the National Natural Science Foundation of China (20874089)the Graduate Research Foundation of Zhejiang Province (YK2010056)
文摘The surface chemical structure development in solution-cast styrene(S)/butadiene(B) block copolymer films as a function of solvent evaporation time was investigated using sum frequency generation vibrational spectroscopy(SFG).The surface structure formation of the styrene(S)/butadien(B) block copolymer(30 wt% PS) films during the solution-to-film process was found to be controlled mainly by dynamic factors,such as the mobility of the PB block in solution.For SB diblock copolymers,a pure PB surface layer was formed only when the film was cast by dilute toluene solution.With increasing concentration of casting solution,PB and PS components were found to coexist on the film surface,and the morphology of the PB component on the film surface changed from cylindrical rods to spheres.For SBS triblock copolymers,a small amount of PS component existed on the surface even if the film was cast by 1.0 wt% toluene solution.In addition,PS components at the outermost layer of the film increased and the length of PB cylindrical rods on the surface decreased with increasing concentration of casting solution.