Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and th...Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10 0 MPa and 10 000 h -1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13 17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1 37% over 4%Ru-BaO/AC10 catalyst.展开更多
Activated carbon-supported Ru-based catalyst and A301 iron catalyst were prepared,and the influences of reaction temperature,space velocity,pressure,and H2/N2 ratio on performance of iron catalyst coupled with Ru cata...Activated carbon-supported Ru-based catalyst and A301 iron catalyst were prepared,and the influences of reaction temperature,space velocity,pressure,and H2/N2 ratio on performance of iron catalyst coupled with Ru catalyst in series for ammonia synthesis were investigated.The activity tests were also performed on the single Ru and Fe catalysts as comparison.Results showed that the activity of the Ru catalyst for ammonia synthesis was higher than that of the iron catalyst by 33.5%-37.6% under the reaction conditions:375-400 °C,10 MPa,10000 h-1,H2︰N2 3,and the Ru catalyst also had better thermal stability when treated at 475 °C for 20 h.The outlet ammonia concentration using Fe-Ru catalyst was increased by 45.6%-63.5% than that of the single-iron catalyst at low tem-perature (375-400 °C),and the outlet ammonia concentration increased with increasing Ru catalyst loading.展开更多
Ammonia(NH_(3))is an irreplaceable chemical that has been widely demanded to keep the sustainable development of modern society.However,its industrial production consumes a huge amount of energy and releases extraordi...Ammonia(NH_(3))is an irreplaceable chemical that has been widely demanded to keep the sustainable development of modern society.However,its industrial production consumes a huge amount of energy and releases extraordinary greenhouse gases(GHGs),leading to various environmental issues.Achieving the green production of ammonia is a great challenge,which has been extensively pursued in the last decade.In this review,the most promising strategy,electrochemical nitrate reduction reaction(e-NO_(3)RR),is comprehensively investigated to give a complete understanding of its development and mechanism and provide guidance for future directions.However,owing to the complex reactions and limited selectivity,a comprehensive understanding of the mechanisms is crucial to further development and commercialization.Moreover,NO_(3)^(-)RR is a promising strategy for simultaneous water treatment and NH_(3)production.A detailed overview of the recent progress in NO_(3)^(-)RR for NH_(3)production with nontransition and transition metal based electrocatalysts is summarized.In addition,critical advanced techniques,future challenges,and prospects are discussed to guide future research on transition metal-based catalysts for commercial NH_(3)synthesis by NO_(3)^(-)reduction.展开更多
Wustite-based catalyst for ammonia synthesis exhibits extremely high activity and easy to reduction under a wide range of conditions. The reaction kinetics of ammonia synthesis can be illustrated perfectly by both the...Wustite-based catalyst for ammonia synthesis exhibits extremely high activity and easy to reduction under a wide range of conditions. The reaction kinetics of ammonia synthesis can be illustrated perfectly by both the classical Temkin-Pyzhev and modified Temkin equations with optimized a of 0.5. The pre-exponent factors and activation energies at the pressures of 8.0 and 15.0MPa are respectively k0 = 1.09 x 1015, 7.35 X 1014Pa0.5.s-1, and E = 156.6, 155.5kJ-mol-1 derived from the classical Temkin-Phyzhev equation, as well as k0 = 2.45 X 1014, 1.83 X 1014Pa0.5s-1, and E = 147.7, 147.2kJ-mol-1 derived from the modified Temkin equation. Although the degree of reduction under isothermal condition is primarily dependent upon temperature, low pressure seems to be imperative for reduction under high temperature and low space velocity to be considered as a high activity catalyst. The reduction behavior with dry feed gas can be illustrated perfectly by the shrinking-sphere-particle model, by which the reduction-rate constants of 4248exp (-71680/KT) and 644exp (-87260/RT) were obtained for the powder (0.045-0.054mm) and irregular shape (nominal diameter 3.17 mm) catalysts respectively. The significant effect of particle size on reduction rate was observed, therefore, it is important to take into account the influence of particle size on reduction for the optimization of reduction process in industry.展开更多
Developing electrocatalysts that exhibit both high activity and ammonia selectivity for nitrate reduction is a significant and demanding challenge,primarily due to the complex nature of the multiple-electron reduction...Developing electrocatalysts that exhibit both high activity and ammonia selectivity for nitrate reduction is a significant and demanding challenge,primarily due to the complex nature of the multiple-electron reduction process involved.An encouraging approach involves coupling highly active precious metals with transition metals to enhance catalytic performance through synergy.Here,we report a ruthenium-nickel alloy catalyst with nanosheets(Ru-Ni NSs)structure that achieves a remarkable ammonia Faradaic efficiency of approximately 95.93%,alongside a yield rate of up to 6.11 g·h^(−1)·cm^(−2).Moreover,the prepared Ru-Ni NSs exhibit exceptional stability during continuous nitrate reduction in a flow reactor for 100 h,maintaining a Faradaic efficiency of approximately 90%and an ammonia yield of 37.4 mg·L^(−1)·h^(−1)using 0.05 M nitrate alkaline electrolyte.Mechanistic studies reveal that the catalytic process follows a two-step pathway,in which HONO serves as a migration intermediate.The presence of a partially oxidized Ru(002)surface enhances the adsorption of nitrate and facilitates the release of the migration intermediate by adjusting the strength of the electrostatic and covalent interactions between the adsorbate and the surface,respectively.On the other hand,the Ni(111)surface promotes the utilization of the migration intermediate and requires less energy for NH_(3)desorption.This tandem process contributes to a high catalytic activity of Ru-Ni NSs towards nitrate reduction.展开更多
Electrochemical nitrogen fixation via a convenient and sustainable manner,exhibits an intriguing prospect for ammonia generation under ambient conditions.Currently,the design and development of high-efficiency and low...Electrochemical nitrogen fixation via a convenient and sustainable manner,exhibits an intriguing prospect for ammonia generation under ambient conditions.Currently,the design and development of high-efficiency and low-cost electrocatalysts remains the major challenge confronting nitrogen reduction reaction(NRR).Herein,anchoring the single Mo atom on the C_(9)N_(4) substrate(Mo@C_(9)N_(4)) to form an efficient single-atom catalyst(SAC) is proposed for the conversion of N2 to NH3.By employing density functional theory(DFT) calculations,we demonstrated that gas phase N2 can be sufficiently activated and efficiently reduced to NH3 on the surface of Mo@C_(9)N_(4).Meanwhile,we found that the NRR dominantly occurred on the Mo center via a preferred distal pathway with favorable limiting potential of 0.40 V.Importantly,the as-established Mo@C_(9)N_(4) catalyst exhibits an outstanding structural stability and good selectivity toward NRR.These findings provide a promising platform for designing Mo-based SACs for electrochemical N2 fixation.展开更多
面向国家绿色低碳战略目标,变革化石资源合成氨技术路线变得尤为迫切,开发可再生能源制“绿氨”将成为合成氨领域未来的重要发展方向.将工业废水中的硝酸根(NO_(3)-)电催化还原为氨(NO_(3)RR),既可有效回收氨,又能消除硝酸根污染影响.然...面向国家绿色低碳战略目标,变革化石资源合成氨技术路线变得尤为迫切,开发可再生能源制“绿氨”将成为合成氨领域未来的重要发展方向.将工业废水中的硝酸根(NO_(3)-)电催化还原为氨(NO_(3)RR),既可有效回收氨,又能消除硝酸根污染影响.然而,NO_(3)RR涉及缓慢的八电子转移过程,含有多种反应中间体,其反应机理复杂不明.此外,水系电解液中存在的析氢竞争反应也为高效NO_(3)RR催化剂的开发设计带来了巨大的挑战.为突破高效催化剂的发展瓶颈,本文通过理论模拟,在低成本的催化剂上设计了高效的NO_(3)RR催化活性位点,并利用简单的制备策略合成了目标催化剂.同时,结合原位表征技术,阐明了NO_(3)RR的反应路径及催化机理.本文通过密度泛函理论(DFT)计算发现,Cu/TiO_(2)催化剂上的Cu-O-Ti-O_(v)结构具有较好的NO_(3)-还原活性,该结构不仅能够促进反应中间体NOx-的吸附和活化,还能有效抑制竞争析氢反应,从而降低NO_(3)RR的反应能垒.在该结构上,NO_(3)RR的反应路径为:NO_(3)^(*)→NO_(2)^(*)→HONO^(*)→NO^(*)→*NOH→*N→^(*)NH→*NH2→*NH_(3)→NH_(3).基于理论计算结果,分别采用浸渍法和尿素水解法制备了系列富含Cu-O-Ti-O_(v)结构的Cu/TiO_(2)催化剂.氮气等温吸附-脱附曲线、拉曼光谱(Raman)、电子顺磁共振波谱、X射线光电子能谱(XPS)和傅立叶红外光谱等结果发现,相比于采用浸渍法制备的系列Cu/TiO_(2)催化剂,采用尿素水解法制备的Cu/TiO_(2)(CT-U)催化剂具有更大的比表面积以及更多的Cu-O-Ti-O_(v)位点,说明尿素水解法可提高Cu颗粒在TiO_(2)载体表面的分散度,增强Cu颗粒与TiO_(2)载体之间的相互作用,提高Cu/TiO_(2)催化剂表面的Cu-O-Ti-O_(v)位点含量.将以上制备出的催化剂应用于催化NO_(3)RR中,结果表明,在-1.0 V vs.RHE还原电位下,CT-U催化剂上氨产率可达3046.5μg h^(-1) mgcat^(-1),高于大多数文献报道结果.循环稳定性测试结果表明,在Cu/TiO_(2)催化剂上构建Cu-O-Ti-O_(v)位点还能显著抑制电催化反应过程中Cu物种从Cu/TiO_(2)催化剂上溶出,从而显著增强催化剂的稳定性.此外,设计制备了不含氧空位的Cu/TiO_(2),TiO_(2)-x,Cu,Cu_(2)O以及CuO催化剂,并将其用于催化NO_(3)RR.结果发现,上述催化剂上的氨产率皆明显低于CT-U催化剂,说明Cu,Ti以及O_(v)构成的Cu-O-Ti-O_(v)结构具有较好的催化协同作用,从而显著提升了NO_(3)RR反应活性.最后,通过原位Raman及原位XPS表征检测反应中间体,验证了由DFT模拟出的NO_(3)RR反应路径.综上,通过在Cu/TiO_(2)催化剂上理论指导构建Cu-O-Ti-O_(v)活性位点,实现了NO_(3)RR性能的有效提升.Cu-O-Ti-O_(v)结构中的多位点协同作用不仅促进了NO_(x)-的吸附和活化,而且抑制了电催化过程中Cu物种从催化剂上的溶出,从而提高了催化剂的稳定性.本研究为设计高效稳定的NO_(3)RR催化剂提供了新思路.展开更多
Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means...Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means of X-ray diffraction (XRD), temperature programmed reduction (TPR), hydrogen temperature programmed desorption (H2-TPD) and O2 titration. Co-support compound formation can be detected in catalyst system by XRD. For the Co/Al2O3 catalysts with low cobalt loading, CoAl2O4 phase appears visibly. Two different reduction regions can be presented for Co/Al2O3 catalysts, which belong to Co3O4 crystallites (reduction at 320 ℃) and cobalt oxide-alumina interaction species (reduction at above 400 ℃). Increasing Co loading results in the increase of Co3O4 crystallite size. The reduced Co/Al2O3 catalysts have two adsorption sites, and cobalt loading greatly influences the adsorption behavior. With the increase of cobalt loading, the amount of low temperature adsorption is increased, the amount of high temperature adsorption is decreased, and the percentage reduction and cobalt crystallite size are increased.展开更多
The pollution of nitrate in groundwater has become an environmental problem of general concern due to adverse human and ecological impacts. Treatment of nitrate-rich wastewater is of significance yet challenging for t...The pollution of nitrate in groundwater has become an environmental problem of general concern due to adverse human and ecological impacts. Treatment of nitrate-rich wastewater is of significance yet challenging for the conventional biological denitrification processes. Electrocatalytic nitrate-to-ammonia conversion emerges as one of the most promising avenues to remove environmentally harmful nitrate from various types of wastewaters while simultaneously producing value-added ammonia. Cu-based materials show great advantages in promoting selective electroreduction of nitrate to ammonia in terms of high nitrate conversion efficiency, ammonia selectivity and ammonia faradaic efficiency thanks to the 3d transition metal structure, low cost, high reserves, and excellent catalytic performance of Cu. In this review, we comprehensively overview the most recent advances in selective electrocatalytic nitrate-to-ammonia conversion using Cu-based materials. Various kinds of Cu-based materials including monometallic Cu catalysts, bimetallic Cu-based catalysts, Cu-based compounds, and Cu-based inorganicorganic hybrid materials and their derivatives are discussed in detail with emphasis on their structural and compositional features and functional mechanisms in promoting nitrate-to-ammonia conversion. Finally, a brief discussion on future directions, challenges and opportunities in this field is also provided.展开更多
Room-temperature electrocatalytic nitrogen reduction reaction(NRR)is of paramount significance for the fertilizer industry and fundamental catalysis science.However,many NRR catalysts were based on the use of metals.H...Room-temperature electrocatalytic nitrogen reduction reaction(NRR)is of paramount significance for the fertilizer industry and fundamental catalysis science.However,many NRR catalysts were based on the use of metals.Herein,we focus on exploring boron-based,metal-free,efficient catalysts for NRR by den-sity functional theory calculations with van der Waals corrections(DFT+D3).Our results show that the NRR performance of the boron active site can be improved by tuning the N-coordination environment in a graphene sheet,and the B-N-C structures show excellent stability.By considering the correlation be-tween the Bader charges of the boron dopant over N-decorated graphene and their NRR activities,the ra-tional design principle of a boron-based catalyst for NRR is developed.The boron-site with one pyridinic nitrogen in a double-vacancy structure is found to be a highly active center,with low reaction energy(0.53 eV)and kinetic barrier(0.84 eV)through the distal mechanism.We also found that the charge loss of boron considerably hampers hydrogen adsorption,which in turn promotes the NRR efficiency by hin-dering the competing hydrogen evolution.This work offers new insights into developing low-cost,highly effective boron-based materials as promising electrocatalysts for green ammonia synthesis.展开更多
基金Supported by the Science &Technical Ministry of China( No.2 0 0 1BA3 2 2 C) ,the Science &Technical Department ofFujian Province( No.2 0 0 0 F0 0 2 ) and the Science &Technical Development Foundation of Fuzhou U niversity( No.XKJQD-0 10 2 )
文摘Ten kinds of activated carbon from different raw materials were used as supports to prepare ruthenium catalysts. N_2 physisorption and CO chemisorption were carried out to investigate the pore size distribution and the ruthenium dispersion of the catalysts. It was found that the Ru dispersion of the catalyst was closely related to not only the texture of carbon support but also the purity of activated carbon. The activities of a series of the carbon-supported barium-promoted Ru catalysts for ammonia synthesis were measured at 425 ℃, 10 0 MPa and 10 000 h -1. The result shows that the same raw material activated carbon, with a high purity, high surface area, large pore volume and reasonable pore size distribution might disperse ruthenium and promoter sufficiently, which activated carbon as support, could be used to manufacture ruthenium catalyst with a high activity for ammonia synthesis. The different raw material activated carbon as the support would greatly influence the catalytic properties of the ruthenium catalyst for ammonia synthesis. For example, with coconut shell carbon(AC1) as the support, the ammonia concentration in the effluent was 13 17% over 4%Ru-BaO/AC1 catalyst, while with the desulfurized coal carbon(AC10) as the support, that in the effluent was only 1 37% over 4%Ru-BaO/AC10 catalyst.
基金Supported by the National Natural Science Foundation of China(20803064) the Natural Science Foundation of Zhejiang Province(Y409034)
文摘Activated carbon-supported Ru-based catalyst and A301 iron catalyst were prepared,and the influences of reaction temperature,space velocity,pressure,and H2/N2 ratio on performance of iron catalyst coupled with Ru catalyst in series for ammonia synthesis were investigated.The activity tests were also performed on the single Ru and Fe catalysts as comparison.Results showed that the activity of the Ru catalyst for ammonia synthesis was higher than that of the iron catalyst by 33.5%-37.6% under the reaction conditions:375-400 °C,10 MPa,10000 h-1,H2︰N2 3,and the Ru catalyst also had better thermal stability when treated at 475 °C for 20 h.The outlet ammonia concentration using Fe-Ru catalyst was increased by 45.6%-63.5% than that of the single-iron catalyst at low tem-perature (375-400 °C),and the outlet ammonia concentration increased with increasing Ru catalyst loading.
基金supported by the National Natural Science Foundation of China(Grant Nos.22050410268,22176131)Shenzhen Basic Research General Project(JCYJ20210324095205015,JCYJ20220818095601002)。
文摘Ammonia(NH_(3))is an irreplaceable chemical that has been widely demanded to keep the sustainable development of modern society.However,its industrial production consumes a huge amount of energy and releases extraordinary greenhouse gases(GHGs),leading to various environmental issues.Achieving the green production of ammonia is a great challenge,which has been extensively pursued in the last decade.In this review,the most promising strategy,electrochemical nitrate reduction reaction(e-NO_(3)RR),is comprehensively investigated to give a complete understanding of its development and mechanism and provide guidance for future directions.However,owing to the complex reactions and limited selectivity,a comprehensive understanding of the mechanisms is crucial to further development and commercialization.Moreover,NO_(3)^(-)RR is a promising strategy for simultaneous water treatment and NH_(3)production.A detailed overview of the recent progress in NO_(3)^(-)RR for NH_(3)production with nontransition and transition metal based electrocatalysts is summarized.In addition,critical advanced techniques,future challenges,and prospects are discussed to guide future research on transition metal-based catalysts for commercial NH_(3)synthesis by NO_(3)^(-)reduction.
基金Supported by the National Natural Science Foundation of China (No. 29706011), the Natural Science Foundation of Zhejiang Province for the distinguished young scholars (No. RC9702) and the Ninth-five Key Project of China (No. 96-550-02-01).
文摘Wustite-based catalyst for ammonia synthesis exhibits extremely high activity and easy to reduction under a wide range of conditions. The reaction kinetics of ammonia synthesis can be illustrated perfectly by both the classical Temkin-Pyzhev and modified Temkin equations with optimized a of 0.5. The pre-exponent factors and activation energies at the pressures of 8.0 and 15.0MPa are respectively k0 = 1.09 x 1015, 7.35 X 1014Pa0.5.s-1, and E = 156.6, 155.5kJ-mol-1 derived from the classical Temkin-Phyzhev equation, as well as k0 = 2.45 X 1014, 1.83 X 1014Pa0.5s-1, and E = 147.7, 147.2kJ-mol-1 derived from the modified Temkin equation. Although the degree of reduction under isothermal condition is primarily dependent upon temperature, low pressure seems to be imperative for reduction under high temperature and low space velocity to be considered as a high activity catalyst. The reduction behavior with dry feed gas can be illustrated perfectly by the shrinking-sphere-particle model, by which the reduction-rate constants of 4248exp (-71680/KT) and 644exp (-87260/RT) were obtained for the powder (0.045-0.054mm) and irregular shape (nominal diameter 3.17 mm) catalysts respectively. The significant effect of particle size on reduction rate was observed, therefore, it is important to take into account the influence of particle size on reduction for the optimization of reduction process in industry.
基金the National Natural Science Foundation of China(No.22006018)the General Project of Zhejiang Provincial Department of Education(No.Y202250180)+2 种基金the key Research and Development Project of Science and Technology Department of Zhejiang Province(No.2023C02019)the National Key Research and Development Program of China(No.2022YFE0127800)the Talent Startingup Project of Research Development Fund of Zhejiang A&F University(No.2034020103).
文摘Developing electrocatalysts that exhibit both high activity and ammonia selectivity for nitrate reduction is a significant and demanding challenge,primarily due to the complex nature of the multiple-electron reduction process involved.An encouraging approach involves coupling highly active precious metals with transition metals to enhance catalytic performance through synergy.Here,we report a ruthenium-nickel alloy catalyst with nanosheets(Ru-Ni NSs)structure that achieves a remarkable ammonia Faradaic efficiency of approximately 95.93%,alongside a yield rate of up to 6.11 g·h^(−1)·cm^(−2).Moreover,the prepared Ru-Ni NSs exhibit exceptional stability during continuous nitrate reduction in a flow reactor for 100 h,maintaining a Faradaic efficiency of approximately 90%and an ammonia yield of 37.4 mg·L^(−1)·h^(−1)using 0.05 M nitrate alkaline electrolyte.Mechanistic studies reveal that the catalytic process follows a two-step pathway,in which HONO serves as a migration intermediate.The presence of a partially oxidized Ru(002)surface enhances the adsorption of nitrate and facilitates the release of the migration intermediate by adjusting the strength of the electrostatic and covalent interactions between the adsorbate and the surface,respectively.On the other hand,the Ni(111)surface promotes the utilization of the migration intermediate and requires less energy for NH_(3)desorption.This tandem process contributes to a high catalytic activity of Ru-Ni NSs towards nitrate reduction.
基金supported by the National Science Foundation for Distinguished Young Scholars for Hebei Province of China(grant E2016203376)NSFC(grant 51571174)。
文摘Electrochemical nitrogen fixation via a convenient and sustainable manner,exhibits an intriguing prospect for ammonia generation under ambient conditions.Currently,the design and development of high-efficiency and low-cost electrocatalysts remains the major challenge confronting nitrogen reduction reaction(NRR).Herein,anchoring the single Mo atom on the C_(9)N_(4) substrate(Mo@C_(9)N_(4)) to form an efficient single-atom catalyst(SAC) is proposed for the conversion of N2 to NH3.By employing density functional theory(DFT) calculations,we demonstrated that gas phase N2 can be sufficiently activated and efficiently reduced to NH3 on the surface of Mo@C_(9)N_(4).Meanwhile,we found that the NRR dominantly occurred on the Mo center via a preferred distal pathway with favorable limiting potential of 0.40 V.Importantly,the as-established Mo@C_(9)N_(4) catalyst exhibits an outstanding structural stability and good selectivity toward NRR.These findings provide a promising platform for designing Mo-based SACs for electrochemical N2 fixation.
文摘面向国家绿色低碳战略目标,变革化石资源合成氨技术路线变得尤为迫切,开发可再生能源制“绿氨”将成为合成氨领域未来的重要发展方向.将工业废水中的硝酸根(NO_(3)-)电催化还原为氨(NO_(3)RR),既可有效回收氨,又能消除硝酸根污染影响.然而,NO_(3)RR涉及缓慢的八电子转移过程,含有多种反应中间体,其反应机理复杂不明.此外,水系电解液中存在的析氢竞争反应也为高效NO_(3)RR催化剂的开发设计带来了巨大的挑战.为突破高效催化剂的发展瓶颈,本文通过理论模拟,在低成本的催化剂上设计了高效的NO_(3)RR催化活性位点,并利用简单的制备策略合成了目标催化剂.同时,结合原位表征技术,阐明了NO_(3)RR的反应路径及催化机理.本文通过密度泛函理论(DFT)计算发现,Cu/TiO_(2)催化剂上的Cu-O-Ti-O_(v)结构具有较好的NO_(3)-还原活性,该结构不仅能够促进反应中间体NOx-的吸附和活化,还能有效抑制竞争析氢反应,从而降低NO_(3)RR的反应能垒.在该结构上,NO_(3)RR的反应路径为:NO_(3)^(*)→NO_(2)^(*)→HONO^(*)→NO^(*)→*NOH→*N→^(*)NH→*NH2→*NH_(3)→NH_(3).基于理论计算结果,分别采用浸渍法和尿素水解法制备了系列富含Cu-O-Ti-O_(v)结构的Cu/TiO_(2)催化剂.氮气等温吸附-脱附曲线、拉曼光谱(Raman)、电子顺磁共振波谱、X射线光电子能谱(XPS)和傅立叶红外光谱等结果发现,相比于采用浸渍法制备的系列Cu/TiO_(2)催化剂,采用尿素水解法制备的Cu/TiO_(2)(CT-U)催化剂具有更大的比表面积以及更多的Cu-O-Ti-O_(v)位点,说明尿素水解法可提高Cu颗粒在TiO_(2)载体表面的分散度,增强Cu颗粒与TiO_(2)载体之间的相互作用,提高Cu/TiO_(2)催化剂表面的Cu-O-Ti-O_(v)位点含量.将以上制备出的催化剂应用于催化NO_(3)RR中,结果表明,在-1.0 V vs.RHE还原电位下,CT-U催化剂上氨产率可达3046.5μg h^(-1) mgcat^(-1),高于大多数文献报道结果.循环稳定性测试结果表明,在Cu/TiO_(2)催化剂上构建Cu-O-Ti-O_(v)位点还能显著抑制电催化反应过程中Cu物种从Cu/TiO_(2)催化剂上溶出,从而显著增强催化剂的稳定性.此外,设计制备了不含氧空位的Cu/TiO_(2),TiO_(2)-x,Cu,Cu_(2)O以及CuO催化剂,并将其用于催化NO_(3)RR.结果发现,上述催化剂上的氨产率皆明显低于CT-U催化剂,说明Cu,Ti以及O_(v)构成的Cu-O-Ti-O_(v)结构具有较好的催化协同作用,从而显著提升了NO_(3)RR反应活性.最后,通过原位Raman及原位XPS表征检测反应中间体,验证了由DFT模拟出的NO_(3)RR反应路径.综上,通过在Cu/TiO_(2)催化剂上理论指导构建Cu-O-Ti-O_(v)活性位点,实现了NO_(3)RR性能的有效提升.Cu-O-Ti-O_(v)结构中的多位点协同作用不仅促进了NO_(x)-的吸附和活化,而且抑制了电催化过程中Cu物种从催化剂上的溶出,从而提高了催化剂的稳定性.本研究为设计高效稳定的NO_(3)RR催化剂提供了新思路.
文摘Co/Al2O3 Fischer-Tropsch synthesis catalysts with different cobalt loadings were prepared using incipient wetness impregnation method. The effects of cobalt loading on the properties of catalysts were studied by means of X-ray diffraction (XRD), temperature programmed reduction (TPR), hydrogen temperature programmed desorption (H2-TPD) and O2 titration. Co-support compound formation can be detected in catalyst system by XRD. For the Co/Al2O3 catalysts with low cobalt loading, CoAl2O4 phase appears visibly. Two different reduction regions can be presented for Co/Al2O3 catalysts, which belong to Co3O4 crystallites (reduction at 320 ℃) and cobalt oxide-alumina interaction species (reduction at above 400 ℃). Increasing Co loading results in the increase of Co3O4 crystallite size. The reduced Co/Al2O3 catalysts have two adsorption sites, and cobalt loading greatly influences the adsorption behavior. With the increase of cobalt loading, the amount of low temperature adsorption is increased, the amount of high temperature adsorption is decreased, and the percentage reduction and cobalt crystallite size are increased.
基金National Natural Science Foundation of China(21701141).
文摘The pollution of nitrate in groundwater has become an environmental problem of general concern due to adverse human and ecological impacts. Treatment of nitrate-rich wastewater is of significance yet challenging for the conventional biological denitrification processes. Electrocatalytic nitrate-to-ammonia conversion emerges as one of the most promising avenues to remove environmentally harmful nitrate from various types of wastewaters while simultaneously producing value-added ammonia. Cu-based materials show great advantages in promoting selective electroreduction of nitrate to ammonia in terms of high nitrate conversion efficiency, ammonia selectivity and ammonia faradaic efficiency thanks to the 3d transition metal structure, low cost, high reserves, and excellent catalytic performance of Cu. In this review, we comprehensively overview the most recent advances in selective electrocatalytic nitrate-to-ammonia conversion using Cu-based materials. Various kinds of Cu-based materials including monometallic Cu catalysts, bimetallic Cu-based catalysts, Cu-based compounds, and Cu-based inorganicorganic hybrid materials and their derivatives are discussed in detail with emphasis on their structural and compositional features and functional mechanisms in promoting nitrate-to-ammonia conversion. Finally, a brief discussion on future directions, challenges and opportunities in this field is also provided.
基金H.L.acknowledges the Center for Computational Materials Sci-ence,Institute for Materials Research,Tohoku University for the use of MASAMUNE-IMR(No.202212-SCKXX-0204)the In-stitute for Solid State Physics(ISSP)at the University of Tokyo for the use of their supercomputers+2 种基金the China BaoWu Low Carbon Metallurgical Innovation Foundation(No.BWLCF202113)the Fundamental Research Funds for the Cen-tral Universities(No.N2202012),JSPS KAKENHI(No.JP23K13703)the Iwatani Naoji Foundation.The authors thank the Beijing PARATERA Tech Co.,Ltd.for providing HPC resources.
文摘Room-temperature electrocatalytic nitrogen reduction reaction(NRR)is of paramount significance for the fertilizer industry and fundamental catalysis science.However,many NRR catalysts were based on the use of metals.Herein,we focus on exploring boron-based,metal-free,efficient catalysts for NRR by den-sity functional theory calculations with van der Waals corrections(DFT+D3).Our results show that the NRR performance of the boron active site can be improved by tuning the N-coordination environment in a graphene sheet,and the B-N-C structures show excellent stability.By considering the correlation be-tween the Bader charges of the boron dopant over N-decorated graphene and their NRR activities,the ra-tional design principle of a boron-based catalyst for NRR is developed.The boron-site with one pyridinic nitrogen in a double-vacancy structure is found to be a highly active center,with low reaction energy(0.53 eV)and kinetic barrier(0.84 eV)through the distal mechanism.We also found that the charge loss of boron considerably hampers hydrogen adsorption,which in turn promotes the NRR efficiency by hin-dering the competing hydrogen evolution.This work offers new insights into developing low-cost,highly effective boron-based materials as promising electrocatalysts for green ammonia synthesis.