Potassium promoted iron–zinc catalysts prepared by co-precipitation method(C–Fe–Zn/K),solvothermal method(S–Fe–Zn/K)and hydrothermal method(H–Fe–Zn/K)could selectively convert CO_2to light olefins,respectively....Potassium promoted iron–zinc catalysts prepared by co-precipitation method(C–Fe–Zn/K),solvothermal method(S–Fe–Zn/K)and hydrothermal method(H–Fe–Zn/K)could selectively convert CO_2to light olefins,respectively.The physicochemical properties of the obtained catalysts were determined by SEM,N_2physisorption,XRD,H_2-TPR,CO_2-TPD and XPS measurements.The results demonstrated that preparation methods had great influences on the morphology,phase structures,reduction and adsorption behavior,and hence the catalytic performance of the catalysts.The samples prepared by hydrothermal and co-precipitation method generated small uniform particles and led to lower specific surface area.In contrast,microspheres with larger specific surface area were formed by self-assembly of nanosheets using solvothermal method.ZnFe_2O_4was the only detectable phase in the fresh C–2Fe–1Zn/K,S–3Fe–1Zn/K and S–2Fe–1Zn/K samples.ZnFe_2O_4and ZnO co-existed with increasing Zncontent in S–1Fe–1Zn/K sample,while ZnO and Fe_2O_3could be observed over H–2Fe–1Zn/K sample.All the used samples contained Fe_3O_4,ZnO and Fe_5C_2.The peak intensity of ZnO was strong in the AR-H–2Fe–1Zn/K sample while it was the lowest in the AR-C–2Fe–1Zn/K sample after reaction.The formation of ZnFe_2O_4increased the interaction between iron and zinc for C–2Fe–1Zn/K and S–Fe–Zn/K samples,causing easier reduction of Fe_2O_3to Fe_3O_4.The surface basicity of the sample prepared by co-precipitation method was much more than that of the other two methods.During CO_2hydrogenation,all the catalysts showed good activity and olefin selectivity.The CO selectivity was increased with increasing Zncontent over S–Fe–Zn/K samples.H–2Fe–1Zn/K catalyst preferred to the production of C_5^+hydrocarbons.CO_2conversion of 54.76%and C_2~=–C_4~=contents of 57.38%were obtained on C–2Fe–1Zn/K sample,respectively.展开更多
Technical progress in the field of conversion of methanol into ethylene and propylene over the ZSM-5 catalyst was summarized. The economical analysis of the technology, the mechanism of chemical reaction and reaction ...Technical progress in the field of conversion of methanol into ethylene and propylene over the ZSM-5 catalyst was summarized. The economical analysis of the technology, the mechanism of chemical reaction and reaction kinetics were introduced. The factors including the effect of the operating conditions,the influence of catalyst preparation conditions and modification of ZSM-5 zeolite on the reaction and coke formation were also discussed.展开更多
Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject...Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject to the rapid deactivation due to coke deposition.Recent work shows that steam regeneration can provide advantages such as low carbon dioxide emission and enhanced light olefins yield in MTO process,compared to that by air regeneration.A kinetic study on the steam regeneration of spent SAPO-34 catalyst has been carried out in this work.In doing so,we first investigated the effect of temperature on the regeneration performance by monitoring the crystal structure,acidity,residual coke properties and other structural parameters.The results show that with the increase of regeneration temperature,the compositions of residual coke on the catalyst change from pyrene and phenanthrene to naphthalene,which are normally considered as active hydrocarbon pool species in MTO reaction.However,when the regeneration temperature is too high,nitrogen oxides can be found in the residual coke.Meanwhile,as the regeneration temperature increases,the quantity of residual coke reduces and the acidity,BET surface area and pore structure of the regenerated samples can be better recovered,resulting in prolonging catalyst lifetime.We have further derived the kinetics of steam regeneration,and obtained an activation energy of about 177.8 kJ·mol^(-1).Compared that with air regeneration,the activation energy of steam regeneration is higher,indicating that the steam regeneration process is more difficult to occur.展开更多
Light olefins(C_(2)–C_(4))are fundamental building blocks for the manufacture of polymers,chemical intermediates,and solvents.In this work,we realized a composite catalyst,comprising MnxZry oxides and SAPO-34 zeolite...Light olefins(C_(2)–C_(4))are fundamental building blocks for the manufacture of polymers,chemical intermediates,and solvents.In this work,we realized a composite catalyst,comprising MnxZry oxides and SAPO-34 zeolite,which can convert syngas(CO+H_(2))into light olefins.MnxZry oxide catalysts with different Mn/Zr molar ratios were facilely prepared using the coprecipitation method prior to physical mixing with SAPO-34 zeolite.The redox properties,surface morphology,electronic state,crystal structure,and chemical elemental composition of the catalysts were examined using H_(2)-TPR,SEM,XPS,XRD,and EDS techniques,respectively.Tandem reactions involved activation of CO and subsequent hydrogenation over the metal oxide catalyst,producing methanol and dimethyl ether as the main reaction intermediates,which then migrated onto SAPO-34 zeolite for light olefins synthesis.Effects of temperature,pressure and reactant gas flow rate on CO conversion and light olefins selectivity were investigated in detail.The Mn_(1)Zr_(2)/SAPO-34 catalyst(Mn/Zr ratio of 1:2)attained a CO conversion of 10.8%and light olefins selectivity of 60.7%,at an optimized temperature,pressure and GHSV of 380℃,3 MPa and 3000h^(−1) respectively.These findings open avenues to exploit other metal oxides with CO activation capabilities for a more efficient syngas conversion and product selectivity.展开更多
Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical prope...Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability.展开更多
A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst s...A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst samples were characterized by N2 physisorption, transmis- sion electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Mossbauer spectroscopy, H2- differential thermogravimetric analysis (H2-DTG), CO temperature-programmed reduction (CO-TPR) and CO2 temperature-programmed des- orption (CO2-TPD). The Fischer-Tropsch synthesis (FTS) performance of the catalyst was measured at 1.5 MPa, 250 ℃ and syngas with H2/CO ratio of 2.0. The characterization results indicated that the addition of manganese decreases the catalyst crystallite size, and improves the catalyst BET surface area and pore volume. The presence of manganese suppresses the catalyst reduction and carburization in H2, CO and syngas, respectively. The addition of manganese improves the catalytic activity of water-gas shift reaction and suppresses the oxidation of iron carbides in the FTS reaction. The incorporation of manganese improves the catalyst surface basicity and results in a significant improvement in the selectivities to light olefins and heavy hydrocarbons (C5+), and furthermore an inhibition of methane formation in FTS. The pure iron catalyst (Mn-00) has the highest initial FTS catalytic activity (65%) and the lowest selectivity (17.35 wt%) to light olefins (C2=-C4=). The addition of an appropriate amount of manganese can improve the catalyst FTS activity.展开更多
Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derive...Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.展开更多
Effects of vanadium on light olefins selectivity of FCC catalysts were investigated with vanadium having different oxidation numbers (hereinafter abbreviated as Oxnum). Molecular modeling studies showed that vanadiu...Effects of vanadium on light olefins selectivity of FCC catalysts were investigated with vanadium having different oxidation numbers (hereinafter abbreviated as Oxnum). Molecular modeling studies showed that vanadium with low Oxnum could affect the chemical conversion of large-size hydrocarbon molecules. However, the vanadium deposited on equilibrium catalyst bad high Oxnum because of the oxidation reaction taking place in the regenerator, so an activation method to reduce vanadium Oxnum named "selective activation" was introduced. It was proved by means of Electron Paramagnetic Resonance (EPR) and Temperature-Programmed Reduction (TPR) methods that the vanadium Oxnum was decreased, when the catalyst was activated. The molecular modeling studies are consistent well with the lab evaluation results. The light olefins selectivity of activated equilibrium catalysts was better than that achieved by the inactivated catalysts. Similar results were observed with the lab vanadium-contaminated catalyst. The light olefins selectivity of the catalyst was optimized when the vanadium Oxnum was close to 2 (VO).展开更多
Directly making light olefins via CO hydrogenation is a promising process toobtain a non-petroleum based supply of alkenes. Limited by the ASF distribution function ofFischer-Tropsch synthesis, the yield of light olef...Directly making light olefins via CO hydrogenation is a promising process toobtain a non-petroleum based supply of alkenes. Limited by the ASF distribution function ofFischer-Tropsch synthesis, the yield of light olefins (C_2-C_4) can not reach the desired levels,which is a great challenge to overcome. Beginning with a brief introduction of F-T synthesis, thispaper provides a review of current research, including thermodynamic analysis, the ASF distributionfunction, the reaction performance of CO hydrogenation and slurry reactor studies. The problemscurrently faced by this research area are presented at the end of the article.展开更多
The new generation of DCC catalysts, the DMMC/RMMC series catalysts developed by RIPP are introduced in this paper. The large molecule cracking ability is enhanced by increasing the portion of large pores; and the cok...The new generation of DCC catalysts, the DMMC/RMMC series catalysts developed by RIPP are introduced in this paper. The large molecule cracking ability is enhanced by increasing the portion of large pores; and the coke selectivity is improved by adjusting the acidity site density on the matrix surface, while the selective cracking reactions are increased. The sphericity of catalysts is improved by adopting new preparation method. The commercial application results have shown that applying DMMC/RMMC series catalysts with the mixed VGO, VGO plus AR, and hydrotreated VGO feed can increase the propylene yield by 2.43, 1.3 and 0.8 percentage points, respectively, as compared to the previous catalysts along with improvement in some products yields. The refining enterprises can make more profits after applying new series of DCC catalysts.展开更多
Catalytic co-cracking of Fischer–Tropsch(FT) light distillate and methanol combines highly endothermic olefin cracking reaction with exothermic methanol conversion over ZSM-5 catalyst to produce light olefins through...Catalytic co-cracking of Fischer–Tropsch(FT) light distillate and methanol combines highly endothermic olefin cracking reaction with exothermic methanol conversion over ZSM-5 catalyst to produce light olefins through a nearly thermoneutral process. The kinetic behavior of co-cracking reactions was investigated by different feed conditions: methanol feed only, olefin feed only and co-feed of methanol with olefins or F–T distillate. The results showed that methanol converted to C2–C6 olefins in first-order parallel reaction at low space time, methylation and oligomerization–cracking prevailed for the co-feed of methanol and C2–C5 olefins, while for C6–C8 olefins,monomolecular cracking was the dominant reaction whether fed alone or co-fed with methanol. For FT distillate and methanol co-feed, alkanes were almost un-reactive, C3–C5 olefins were obtained as main products, accounting for 71 wt% for all products. A comprehensive co-cracking reaction scheme was proposed and the model parameters were estimated by the nonlinear least square method. It was verified by experimental data that the kinetic model was reliable to predict major product distribution for co-cracking of FT distillate with methanol and could be used for further reactor development and process design.展开更多
Light olefins,particularly ethylene and propylene,are the most important building blocks for the petrochemical industry,and demand for their production has been increasing.The catalytic pyrolysis process(CPP)and the c...Light olefins,particularly ethylene and propylene,are the most important building blocks for the petrochemical industry,and demand for their production has been increasing.The catalytic pyrolysis process(CPP)and the corresponding catalyst,developed by SINOPEC Research Institute of Petroleum Processing Co.,Ltd.,are designed to maximize the light olefin yield from catalytic cracking of heavy feedstocks.However,owing to the continuing degradation of feedstocks,the original catalyst can no longer maintain its activity.Herein,we describe the rational design of the new catalyst,Epylene,from a new metal-modified hierarchical ZSM-5 zeolite and matrix.Epylene was tested in the CPP unit of Shaanxi Yanchang Coal Yulin Energy and Chemical Company.A test run and base run were conducted to demonstrate the better performance of Epylene compared with the original catalyst.The properties of the feedstocks and the operating conditions in both runs were similar.The light olefin yield was increased from 33.95%to 36.50%and the coke yield was only 9.58%in the test run,which was lower than that in the base run.展开更多
CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly...CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly used for the hydrogenation of carbon oxides to hydrocarbons.Iron-molybdenum catalysts have found numerous applications in catalysis,but have been never evaluated in the CO_(2)hydrogenation.In this work,the structural properties of iron-molybdenum catalysts without and with a promoting alkali metal(Li,Na,K,Rb,or Cs)were characterized using X-ray diffraction,hydrogen temperatureprogrammed reduction,CO_(2)temperature-programmed desorption,in-situ^(57)Fe Mossbauer spectroscopy and operando X-ray adsorption spectroscopy.Their catalytic performance was evaluated in the CO_(2)hydrogenation.During the reaction conditions,the catalysts undergo the formation of an iron(Ⅱ)molybdate structure,accompanied by a partial reduction of molybdenum and carbidization of iron.The rate of CO_(2)conversion and product selectivity strongly depend on the promoting alkali metals,and electronegativity was identified as an important factor affecting the catalytic performance.Higher CO_(2)conversion rates were observed with the promoters having higher electronegativity,while low electronegativity of alkali metals favors higher light olefin selectivity.展开更多
The influence of several anions on Fe-based Fischer-Tropsch catalyst, used in the synthesis of light olefins from synthesis gas, was studied. The results indicated that the addition of anions resulted in the reduction...The influence of several anions on Fe-based Fischer-Tropsch catalyst, used in the synthesis of light olefins from synthesis gas, was studied. The results indicated that the addition of anions resulted in the reduction of catalytic activity. When the anion content in the catalyst was 500 ppm, the influence of different anions on the catalysis activity was as follows: S^2- 〉Cl^-〉SO4^2-〉NO3. The addition of S^2- improved the selectivity of total hydrocarbons in the products, and Cl^- reduced this selectivity but increased the olefin content in the total hydrocarbons at the same time. When the contents of S^2- and Clin the catalyst were less than 50 ppm, their influence could be ignored. The XRD results indicated that the addition of anions reduced the contents of α-Fe and FeaC, which were the active components in the catalyst.展开更多
甲醇制烯烃技术(DMTO,Dimethylether/Methanol to Olefin)是中科院大连化学物理研究所与中石化洛阳工程有限公司和新兴能源科技公司合作开发的具有自主知识产权的低碳烯烃生产新技术。2010年8月采用DMTO技术的世界上首套甲醇制烯烃工业...甲醇制烯烃技术(DMTO,Dimethylether/Methanol to Olefin)是中科院大连化学物理研究所与中石化洛阳工程有限公司和新兴能源科技公司合作开发的具有自主知识产权的低碳烯烃生产新技术。2010年8月采用DMTO技术的世界上首套甲醇制烯烃工业装置在神华包头投料开车成功;2013年2月宁波禾元的DMTO工业装置也投入运行。这两套装置的甲醇进料量均为1.80 Mt/a,烯烃产量为600 kt/a。本文对DMTO工艺机理、工程设计特点和投料运行进行了介绍。DMTO工业装置运行结果表明,DMTO专用催化剂具有非常好的活性、选择性及抗磨损性能;采用大型浅层密相流化床反应器可以发挥催化剂性能,保障反应床层恒温及提高运行可靠性。为了减少开工阶段喷燃烧油可能对催化剂带来的不利影响,两套工业装置的投料开车均采用首创的利用反应热来进行再生器和反应器升温的方法。DMTO工业装置稳定运行时甲醇转化率接近100%,双烯选择性达到80%。72 h标定结果显示,生产1 t烯烃所需要的甲醇原料约为2.97 t。展开更多
基金Supports by the National Natural Science Foundation of China(21666030,21366025)National First-rate Discipline Construction Project of Ningxia(NXYLXK2017A04)
文摘Potassium promoted iron–zinc catalysts prepared by co-precipitation method(C–Fe–Zn/K),solvothermal method(S–Fe–Zn/K)and hydrothermal method(H–Fe–Zn/K)could selectively convert CO_2to light olefins,respectively.The physicochemical properties of the obtained catalysts were determined by SEM,N_2physisorption,XRD,H_2-TPR,CO_2-TPD and XPS measurements.The results demonstrated that preparation methods had great influences on the morphology,phase structures,reduction and adsorption behavior,and hence the catalytic performance of the catalysts.The samples prepared by hydrothermal and co-precipitation method generated small uniform particles and led to lower specific surface area.In contrast,microspheres with larger specific surface area were formed by self-assembly of nanosheets using solvothermal method.ZnFe_2O_4was the only detectable phase in the fresh C–2Fe–1Zn/K,S–3Fe–1Zn/K and S–2Fe–1Zn/K samples.ZnFe_2O_4and ZnO co-existed with increasing Zncontent in S–1Fe–1Zn/K sample,while ZnO and Fe_2O_3could be observed over H–2Fe–1Zn/K sample.All the used samples contained Fe_3O_4,ZnO and Fe_5C_2.The peak intensity of ZnO was strong in the AR-H–2Fe–1Zn/K sample while it was the lowest in the AR-C–2Fe–1Zn/K sample after reaction.The formation of ZnFe_2O_4increased the interaction between iron and zinc for C–2Fe–1Zn/K and S–Fe–Zn/K samples,causing easier reduction of Fe_2O_3to Fe_3O_4.The surface basicity of the sample prepared by co-precipitation method was much more than that of the other two methods.During CO_2hydrogenation,all the catalysts showed good activity and olefin selectivity.The CO selectivity was increased with increasing Zncontent over S–Fe–Zn/K samples.H–2Fe–1Zn/K catalyst preferred to the production of C_5^+hydrocarbons.CO_2conversion of 54.76%and C_2~=–C_4~=contents of 57.38%were obtained on C–2Fe–1Zn/K sample,respectively.
文摘Technical progress in the field of conversion of methanol into ethylene and propylene over the ZSM-5 catalyst was summarized. The economical analysis of the technology, the mechanism of chemical reaction and reaction kinetics were introduced. The factors including the effect of the operating conditions,the influence of catalyst preparation conditions and modification of ZSM-5 zeolite on the reaction and coke formation were also discussed.
基金the National Natural Science Foundation of China(91834302)。
文摘Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject to the rapid deactivation due to coke deposition.Recent work shows that steam regeneration can provide advantages such as low carbon dioxide emission and enhanced light olefins yield in MTO process,compared to that by air regeneration.A kinetic study on the steam regeneration of spent SAPO-34 catalyst has been carried out in this work.In doing so,we first investigated the effect of temperature on the regeneration performance by monitoring the crystal structure,acidity,residual coke properties and other structural parameters.The results show that with the increase of regeneration temperature,the compositions of residual coke on the catalyst change from pyrene and phenanthrene to naphthalene,which are normally considered as active hydrocarbon pool species in MTO reaction.However,when the regeneration temperature is too high,nitrogen oxides can be found in the residual coke.Meanwhile,as the regeneration temperature increases,the quantity of residual coke reduces and the acidity,BET surface area and pore structure of the regenerated samples can be better recovered,resulting in prolonging catalyst lifetime.We have further derived the kinetics of steam regeneration,and obtained an activation energy of about 177.8 kJ·mol^(-1).Compared that with air regeneration,the activation energy of steam regeneration is higher,indicating that the steam regeneration process is more difficult to occur.
基金financially supported by Youth Foundation of ZUST,China(2019QN_(2)3)and Foundation of State Key Laboratory of Highefficiency Utilization of Coal and Green Chemical Engineering(2019-KF-21).
文摘Light olefins(C_(2)–C_(4))are fundamental building blocks for the manufacture of polymers,chemical intermediates,and solvents.In this work,we realized a composite catalyst,comprising MnxZry oxides and SAPO-34 zeolite,which can convert syngas(CO+H_(2))into light olefins.MnxZry oxide catalysts with different Mn/Zr molar ratios were facilely prepared using the coprecipitation method prior to physical mixing with SAPO-34 zeolite.The redox properties,surface morphology,electronic state,crystal structure,and chemical elemental composition of the catalysts were examined using H_(2)-TPR,SEM,XPS,XRD,and EDS techniques,respectively.Tandem reactions involved activation of CO and subsequent hydrogenation over the metal oxide catalyst,producing methanol and dimethyl ether as the main reaction intermediates,which then migrated onto SAPO-34 zeolite for light olefins synthesis.Effects of temperature,pressure and reactant gas flow rate on CO conversion and light olefins selectivity were investigated in detail.The Mn_(1)Zr_(2)/SAPO-34 catalyst(Mn/Zr ratio of 1:2)attained a CO conversion of 10.8%and light olefins selectivity of 60.7%,at an optimized temperature,pressure and GHSV of 380℃,3 MPa and 3000h^(−1) respectively.These findings open avenues to exploit other metal oxides with CO activation capabilities for a more efficient syngas conversion and product selectivity.
基金supported by the Key Project of Natural Science Foundation of Ningxia(NZ13010)the National Natural Science Foundation of China(21366025)~~
文摘Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability.
基金supported by Natural Science Foundation of Chongqing Three Gorges University (12ZD14)Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University
文摘A systematic study was carried out to investigate the promotion effect of manganese on the performance of a coprecipitated iron-manganese bimetallic catalyst for the light olefins synthesis from syngas. The catalyst samples were characterized by N2 physisorption, transmis- sion electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), Mossbauer spectroscopy, H2- differential thermogravimetric analysis (H2-DTG), CO temperature-programmed reduction (CO-TPR) and CO2 temperature-programmed des- orption (CO2-TPD). The Fischer-Tropsch synthesis (FTS) performance of the catalyst was measured at 1.5 MPa, 250 ℃ and syngas with H2/CO ratio of 2.0. The characterization results indicated that the addition of manganese decreases the catalyst crystallite size, and improves the catalyst BET surface area and pore volume. The presence of manganese suppresses the catalyst reduction and carburization in H2, CO and syngas, respectively. The addition of manganese improves the catalytic activity of water-gas shift reaction and suppresses the oxidation of iron carbides in the FTS reaction. The incorporation of manganese improves the catalyst surface basicity and results in a significant improvement in the selectivities to light olefins and heavy hydrocarbons (C5+), and furthermore an inhibition of methane formation in FTS. The pure iron catalyst (Mn-00) has the highest initial FTS catalytic activity (65%) and the lowest selectivity (17.35 wt%) to light olefins (C2=-C4=). The addition of an appropriate amount of manganese can improve the catalyst FTS activity.
文摘Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.
文摘Effects of vanadium on light olefins selectivity of FCC catalysts were investigated with vanadium having different oxidation numbers (hereinafter abbreviated as Oxnum). Molecular modeling studies showed that vanadium with low Oxnum could affect the chemical conversion of large-size hydrocarbon molecules. However, the vanadium deposited on equilibrium catalyst bad high Oxnum because of the oxidation reaction taking place in the regenerator, so an activation method to reduce vanadium Oxnum named "selective activation" was introduced. It was proved by means of Electron Paramagnetic Resonance (EPR) and Temperature-Programmed Reduction (TPR) methods that the vanadium Oxnum was decreased, when the catalyst was activated. The molecular modeling studies are consistent well with the lab evaluation results. The light olefins selectivity of activated equilibrium catalysts was better than that achieved by the inactivated catalysts. Similar results were observed with the lab vanadium-contaminated catalyst. The light olefins selectivity of the catalyst was optimized when the vanadium Oxnum was close to 2 (VO).
文摘Directly making light olefins via CO hydrogenation is a promising process toobtain a non-petroleum based supply of alkenes. Limited by the ASF distribution function ofFischer-Tropsch synthesis, the yield of light olefins (C_2-C_4) can not reach the desired levels,which is a great challenge to overcome. Beginning with a brief introduction of F-T synthesis, thispaper provides a review of current research, including thermodynamic analysis, the ASF distributionfunction, the reaction performance of CO hydrogenation and slurry reactor studies. The problemscurrently faced by this research area are presented at the end of the article.
文摘The new generation of DCC catalysts, the DMMC/RMMC series catalysts developed by RIPP are introduced in this paper. The large molecule cracking ability is enhanced by increasing the portion of large pores; and the coke selectivity is improved by adjusting the acidity site density on the matrix surface, while the selective cracking reactions are increased. The sphericity of catalysts is improved by adopting new preparation method. The commercial application results have shown that applying DMMC/RMMC series catalysts with the mixed VGO, VGO plus AR, and hydrotreated VGO feed can increase the propylene yield by 2.43, 1.3 and 0.8 percentage points, respectively, as compared to the previous catalysts along with improvement in some products yields. The refining enterprises can make more profits after applying new series of DCC catalysts.
文摘Catalytic co-cracking of Fischer–Tropsch(FT) light distillate and methanol combines highly endothermic olefin cracking reaction with exothermic methanol conversion over ZSM-5 catalyst to produce light olefins through a nearly thermoneutral process. The kinetic behavior of co-cracking reactions was investigated by different feed conditions: methanol feed only, olefin feed only and co-feed of methanol with olefins or F–T distillate. The results showed that methanol converted to C2–C6 olefins in first-order parallel reaction at low space time, methylation and oligomerization–cracking prevailed for the co-feed of methanol and C2–C5 olefins, while for C6–C8 olefins,monomolecular cracking was the dominant reaction whether fed alone or co-fed with methanol. For FT distillate and methanol co-feed, alkanes were almost un-reactive, C3–C5 olefins were obtained as main products, accounting for 71 wt% for all products. A comprehensive co-cracking reaction scheme was proposed and the model parameters were estimated by the nonlinear least square method. It was verified by experimental data that the kinetic model was reliable to predict major product distribution for co-cracking of FT distillate with methanol and could be used for further reactor development and process design.
基金This research was financially supported by the National Key R&D Program of China(grant number 2022YFB3504000)the Contract Projects of China Petroleum&Chemical Corporation(SINOPEC Corp.)(grant number ST22005).
文摘Light olefins,particularly ethylene and propylene,are the most important building blocks for the petrochemical industry,and demand for their production has been increasing.The catalytic pyrolysis process(CPP)and the corresponding catalyst,developed by SINOPEC Research Institute of Petroleum Processing Co.,Ltd.,are designed to maximize the light olefin yield from catalytic cracking of heavy feedstocks.However,owing to the continuing degradation of feedstocks,the original catalyst can no longer maintain its activity.Herein,we describe the rational design of the new catalyst,Epylene,from a new metal-modified hierarchical ZSM-5 zeolite and matrix.Epylene was tested in the CPP unit of Shaanxi Yanchang Coal Yulin Energy and Chemical Company.A test run and base run were conducted to demonstrate the better performance of Epylene compared with the original catalyst.The properties of the feedstocks and the operating conditions in both runs were similar.The light olefin yield was increased from 33.95%to 36.50%and the coke yield was only 9.58%in the test run,which was lower than that in the base run.
基金financial support from European Union(Interreg FWVL V project PSYCHE)from the French National Research Agency(Multiprobe project,ANR-20-CE42-0007)。
文摘CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly used for the hydrogenation of carbon oxides to hydrocarbons.Iron-molybdenum catalysts have found numerous applications in catalysis,but have been never evaluated in the CO_(2)hydrogenation.In this work,the structural properties of iron-molybdenum catalysts without and with a promoting alkali metal(Li,Na,K,Rb,or Cs)were characterized using X-ray diffraction,hydrogen temperatureprogrammed reduction,CO_(2)temperature-programmed desorption,in-situ^(57)Fe Mossbauer spectroscopy and operando X-ray adsorption spectroscopy.Their catalytic performance was evaluated in the CO_(2)hydrogenation.During the reaction conditions,the catalysts undergo the formation of an iron(Ⅱ)molybdate structure,accompanied by a partial reduction of molybdenum and carbidization of iron.The rate of CO_(2)conversion and product selectivity strongly depend on the promoting alkali metals,and electronegativity was identified as an important factor affecting the catalytic performance.Higher CO_(2)conversion rates were observed with the promoters having higher electronegativity,while low electronegativity of alkali metals favors higher light olefin selectivity.
文摘The influence of several anions on Fe-based Fischer-Tropsch catalyst, used in the synthesis of light olefins from synthesis gas, was studied. The results indicated that the addition of anions resulted in the reduction of catalytic activity. When the anion content in the catalyst was 500 ppm, the influence of different anions on the catalysis activity was as follows: S^2- 〉Cl^-〉SO4^2-〉NO3. The addition of S^2- improved the selectivity of total hydrocarbons in the products, and Cl^- reduced this selectivity but increased the olefin content in the total hydrocarbons at the same time. When the contents of S^2- and Clin the catalyst were less than 50 ppm, their influence could be ignored. The XRD results indicated that the addition of anions reduced the contents of α-Fe and FeaC, which were the active components in the catalyst.